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1 Introduction

Our goal is to develop a fully automated classification scheme for computer-aided diag-
nosis (CAD) in mammography. Traditional CAD classification schemes, and performance
measurement tools such as receiver operating characteristic (ROC) analysis, are based on
the premise that the observations are classified into two groups, most commonly malignant
and benign. Such classification schemes are difficult to fully automate, as they analyze
radiologist-identified lesions; this is because many false-positive (FP) detections produced
by a computerized detection scheme cannot reasonably be classified as benign or malignant
lesions. Our proposed scheme would classify computer detections into three groups: malig-
nant lesions, benign lesions, and FP computer detections. This method presents considerable
difficulties in terms of both signal detection theory and performance evaluation methods such
as ROC analysis. Our efforts in this direction during the course of the supported research
were thus generally more theoretical than practical. However, we consider the results of our
work both promising and important.

2 Body

A wide variety of medical decision-making tasks, in particular tasks for which CAD has been
proposed as an aid to the physician, can be formulated as “two-group classification” tasks.
That is, the physician must use the information available about a patient (e. g., a set of
mammographic films of the patient, and the result of computer analysis of those images) to
decide whether a patient belongs to a diseased, or abnormal, group or not (e. g., whether a
breast lesion suspicious enough to warrant further imaging procedures or biopsy is present
or not).

ROC analysis has long been considered the most appropriate methodology for evaluating
the performance of a two-group classifier or observer [1], particularly for medical decision-
making tasks [2]. Furthermore, the optimal or “ideal” observer — that observer which
achieves the best possible performance given a particular population of observational data
— has also been well understood for quite some time [3]. In practice, the ideal observer
requires knowledge of the probability density functions (PDFs) from which the observational
data are drawn, and thus cannot be achieved in non-trivial tasks by human or automated
observers. Nevertheless, successful methods for estimating ideal observer decision variables
from a sample of observational data [4], and for plotting an ideal observer ROC curve from
a sample of decision variable data [5], have been developed.

Although the form of the three-group ideal observer has also been known for some time [3],
the development of a practical three-group classifier and a fully general extension of ROC
analysis to three-group classification has proven quite difficult, primarily due to the tremen-
dous increase in complexity encountered when one moves from two-group to three-group clas-
sification tasks. Briefly, characterizing the performance of a three-group classifier requires an
ROC “hypersurface” with five degrees of freedom in a six-dimensional ROC space [6, 7] (by
contrast, a two-group classifier is fully described by a simple curve in a two-dimensional ROC
space). Despite these difficulties, our research efforts are focused on the development of a
three-group classifier and performance evaluation methodology for breast lesion classification
in a mammographic CAD system.

We strongly believe the development of such a three-group classifier to be of practical and
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not merely academic importance. In the past, two types of mammographic CAD schemes
have been investigated at the University of Chicago: one for automatically detecting mass
lesions in mammograms [8–12], and another for classifying known lesions as malignant or
benign [13–17]. Combining these two types of CAD schemes is inherently difficult, because
the output of the detection scheme, which identifies candidates for subsequent classification,
will necessarily include FP computer detections in addition to the malignant and benign
lesions to be classified. These FP computer detections correspond to objects which were
by design not included in the training sample of the classification scheme, because they are
not members of the data population (benign and malignant breast lesions) for which the
classification scheme was created. It is clear then that the detection scheme’s output cannot
be used unmodified as the input to the classification scheme.

Our approach has been to treat this problem explicitly as a three-group classification
task. That is, the output of the detection scheme should be classified as malignant lesions,
benign lesions, and non-lesions (FP computer detections), and the classifier to be estimated
is the ideal observer decision function for this task. If successful, this approach would allow
radiologists to identify more malignant lesions without increasing biopsy rates for patients
without malignancy.

Our approved Statement of Work was as follows:

Task 1. Develop a three-group classifier for clustered microcalcifications in mammograms, Months
1-12.

(a) Collect cases containing 180 malignant and 180 benign clusters of microcalcifica-
tions.

(b) Determine truth state of imaged lesions by reviewing the images, radiologist re-
ports, and pathology reports for these cases.

(c) Obtain at least 180 FP computer detections from these cases using the existing
detection scheme.

(d) Train and test a three-group classifier on these lesions, using methodology we
previously developed for mass lesions.

Task 2. Design and develop an interface for an intelligent workstation for CAD, Months 11-14.

(a) Examine the most useful features of the interface of the existing intelligent CAD
workstation for mammographic lesion detection.

(b) Examine the most useful features of the interface of the existing CAD schemes in
our laboratory for classifying manually detected lesions as malignant or benign.

(c) Develop a simple interface drawing on the advantages of the existing detection
and classification schemes, extended to the three-group classification task.

(d) Test the interface with non-radiologist observers in our laboratory familiar with
the goals of CAD and with interface design principles.

Task 3. Design and perform a pilot observer study measuring radiologists’ performances using
the three-group classification schemes and traditional two-group classification schemes,
Months 15-24.

(a) Recruit radiologists from our institution and neighboring institutions.
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(b) Provide training to the radiologists in the use of the intelligent CAD workstation
interfaces.

(c) Measure radiologist performance using the three-group intelligent workstation,
and using the existing intelligent workstation for detecting lesions followed by
manual selection of lesions to be analyzed by the existing schemes for two-group
classification of lesions.

Task 4. Develop techniques to compare radiologists’ performance in using the proposed three-
group and traditional two-group classification schemes, Months 18-36.

(a) Develop methodology to extend two-group ROC analysis to tasks in which obser-
vations are classified into three groups.

(b) Develop methodology to determine the statistical significance of measured differ-
ences in performance between three-group classifiers.

(c) Use this methodology to analyze the observer data obtained in Task 3.

For Tasks 1(a) and 1(b), we collected during the second year of this project a database of 134
mammographic cases, four standard views per case; the majority of these cases contained
malignant or benign clustered microcalcification lesions. During the course of the past year,
however, the images were found to be unsuitable for our purposes. We therefore collected
another set of 270 images, 142 of which contained benign microcalcification clusters, and
128 of which contained malignant microcalcification clusters. The truth for the malignant
microcalcification lesions was verified by pathology report, and that for the benign lesions by
pathology report when biopsy was recommended, or by followup when that was recommended
by the original radiologist. This is less than the number of malignant and benign lesions
initially proposed for this project, but we will have the opportunity to supplement these with
further such cases from the database of a colleague in our laboratories should the research
continue under other funding mechanisms (see Sec. 4).

For Tasks 1(c) and 1(d), we initially encountered difficulties porting the computer code
for the existing detection scheme from the legacy equipment for which it was written (IBM
RISC 6000 machines, whose operating systems are no longer supported and whose hardware
is too old to be considered reliable) to a modern PC workstation running a Linux operating
system. These difficulties were traced to compiler incompatibilities between the two systems.
A computer programmer in our laboratory with extensive experience with both systems and
intimate familiarity with the internals of the detection scheme investigated and eliminated
the majority of these.

We had planned to submit a paper to Medical Physics reporting on the results for Task 1.
In fact, we are quite close to obtaining the final results needed for completing such a paper.
Unfortunately, the principal investigator very recently discovered an error in the code he had
written [18] to interface between the numerical programming environment we use (matlab)
and the Bayesian artificial neural network (BANN) package of MacKay [19] that serves as
the basis of our classifier [4,18]. We fully expect the relevant experiments incorporating the
corrected code to be completed soon, and should be able to submit a paper describing these
results to Medical Physics within another two or three weeks. We will then submit to the
USAMRMC an addendum to this report including those final results.

Our research accomplishments focused largely on Task 4. Although the “methodology we
previously developed for mass lesions” [20] was successful for estimating ideal observer deci-
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sion variables based on lesion feature data, a practical classifier to make use of this decision
variable data has not yet been implemented. As the difficulties in theoretically characterizing
the behavior of such a three-group classifier are intimately related to evaluation of such a
classifier’s performance (i. e., the development of a three-group extension to ROC analysis),
such a reordering of the approved tasks seemed logically justified. In fact, the theoretical
difficulties involved in completely characterizing the general behavior of a three-group ideal
observer, and in developing a three-group extension to ROC analysis, prevented us from
accomplishing Tasks 2 or 3. However, proposed further work on those theoretical issues,
and on the development of such a classification scheme for CAD and its evaluation through
radiologist observer studies, served as the basis for two research grant applications for which
we have applied. These are listed in Sec. 4; if either is funded, it will provide support for
the principal investigator at the assistant professor level.

By far the most important result achieved so far was our discovery and proof (published
during the first year of support) that an obvious generalization of the well-known performance
metric, the area under the ROC curve (AUC), is not in fact useful in tasks with three or
more groups [21]. (See Appendix C.) This accomplishment relates directly to Task 4.(b)
above, which implicitly requires a well-defined performance metric with respect to which the
statistical significance of differences in performance may be computed. Although arguably
a “negative” rather than “positive” result — a well-defined performance metric has not yet
been found — this result has been very well received in the observer performance and CAD
research communities. First, it serves as a striking yet typical example of how intuition
can often be an unreliable guide in extending methodology from the two-group classification
task to tasks with three or more groups. Second, it clearly indicates that the search for
such a well-defined performance metric will yield a deeper understanding of the properties
of three-group observer performance, particularly as characterized by ROC analysis.

We stated above that exact determination of the ideal observer’s decision variables re-
quires knowledge of the PDFs from which the observational data to be classified were drawn.
The tool we have been using for some time now to estimate ideal observer decision variables
from samples of observational data is the BANN [19]. In previous simulation studies in
which the PDFs of the observational data are known, the output of the BANN was found
to agree with the calculated ideal observer decision variables for two-group [4] and three-
group [18] classification tasks. In practice, one does not have the PDFs of real observational
data, but we previously developed a means of evaluating three-group BANN decision vari-
ables by comparing them with two-group BANN decision variables obtained from simplified
two-group tasks using the same observational data [20]. During the first year of support,
we developed an independent technique for evaluating three-group BANN estimates of ideal
observer decision variables, again based on theoretical properties of the three-group ideal
observer [22]. (See Appendix D.) This result is important because the three-group classifier
we are developing under the current research will be trained and tested using feature data
from actual mammograms; thus, we will not have access to the PDFs from which those data
are drawn. In addition to three-group ROC analysis methods to be developed by extension
from existing two-group methods [5], it will be beneficial to have a direct method of judging
the ability of the BANN decision variables to accurately estimate ideal observer decision
variables.

During the first and second years of support, we investigated in great detail the behavior
of the three-group ideal observer. In particular, it is well-known that the three-group ideal
observer makes decisions by partitioning a plane of two decision variables into three regions
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using three decision boundary lines [3]. We showed that the locations and orientations
of these decision boundary lines are not arbitrary; given the slopes and y-intercepts, for
example, of two of the lines, those of the third line are constrained to lie within a particular
range of values [23]. (See Appendix G.) A detailed understanding of such properties of the
three-group ideal observer will prove crucial to the calculation of observer ROC operating
points, and by extension to observer performance evaluation in general.

In our efforts to develop a three-group classifier and appropriate performance evaluation
methodology, we have made every attempt to keep our analysis as general as possible de-
spite the theoretical difficulties this entails. Other researchers have proposed three-group
methodology by considering observers whose behavior is restricted in particular ways, or by
considering only a subset of the possible performance characterization indices (the axes of
ROC space), or both [24–28]. The inherent complexity of the three-group classification task
makes direct comparison of different methods by different researchers difficult. To facilitate
such a comparison, we analyzed the different methods in terms of the three-group ideal ob-
server, both in preliminary work [29] (see Appendix E) and later through more in-depth
analysis [30]. (See Appendix F.) In addition to providing us with valuable insight and expe-
rience in comparing different classifiers, which should ultimately prove directly relevant to
the completion of Task 4, this work also enabled us to present to the observer performance
and CAD research communities a useful framework within which comparison of superficially
very different classifiers can readily be made. A poster presentation of the theoretical results
of this and the preceding paragraph, as well as our research accomplishments during the first
year of this award, was made at the 2005 US DOD Breast Cancer Research Program Era of
Hope Meeting in Philadelphia, PA [31].

In the second and third years of support, we analyzed a simplified performance evalua-
tion method (i. e., an extension of ROC analysis to tasks with three groups) which considers
only the three “sensitivities” of the observer — the three probabilities of correctly iden-
tifying an observation from one of the three respective groups. (This can, in general, be
expected to yield an incomplete description of observer performance, which requires a set
of six conditional classification probabilities [7].) This method was originally proposed by
Mossman [26] for a pair of essentially ad hoc decision rules and arbitrary decision variables,
and more recently advocated by He et al. [28] for a set of ideal observer decision variables
and a decision rule shown [28–30] to be a special case of the ideal observer decision rule,
and also shown [29, 30] to be a special case of the decision rule proposed by Scurfield [25].
We were able to derive a more fundamental motivation for the decision rules described in
those works, given the simplified performance description in terms of only the sensitivities,
by applying previously successful Neyman-Pearson optimization methodology [3, 7] to this
restricted performance evaluation strategy.

Simply put, assuming that one chooses to measure observer performance only in terms
of the observer’s sensitivities, we proved [32] that the optimal observer with respect to this
metric is in fact the special case of the ideal observer proposed by He et al. [28]. (See
Appendix H.) We then applied this analysis technique [33] to other decision strategies and
performance evaluation strategies which we had previously analyzed in terms of the ideal
observer decision rule [30]. (See Appendix I.) Given the difficulties inherent in a fully general
description of three-class ideal observer behavior and performance evaluation, it is possible
that a restricted or simplified model, similar to those proposed already by other researchers,
may ultimately prove of greater practical value than the fully general theoretical model.
We consider this work important, because it provides a principled theoretical framework in
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which to evaluate and compare such restricted and simplified models.
As stated above, a well-defined performance metric is required in order to understand

the properties of three-group observer performance, particularly as characterized by ROC
analysis. Furthermore, we showed that an obvious generalization of the AUC does not in
fact prove useful in tasks with three or more groups [21]. During the third year of support,
we developed, and presented preliminary results of studies involving, a novel “utility”-based
performance metric [34]. (See Appendix J.) In the beginning of this section, we introduced
the concept of the ideal observer as that observer which achieves the best possible perfor-
mance given a particular population of observational data. One way of deriving the ideal
observer model is to assign a number, the utility, to each possible decision; the ideal observer
is then that observer which maximizes the expected utility [3,7]. Our proposed performance
metric is grounded in this concept of the utility of an observer’s decisions, and can be shown
to be directly related to intuitive properties of the observer’s ROC curve (AUC and the arc
length along the curve or, for tasks with more than two groups, the hypervolume under the
ROC hypersurface and the hypersurface itself). Although further analysis will be necessary
to fully characterize the properties of this novel performance metric, we have high hopes
that it will prove to be of use in characterizing observer performance without being subject
to the limitations we have shown exist for a more obvious generalization of the AUC.

A detailed understanding of the properties of the general three-group ideal observer, and
of the restricted and simplified ROC models described above, will ultimately prove crucial to
the calculation of observer ROC operating points, and by extension to observer performance
evaluation in general. Throughout the course of this project, the principal investigator and
mentor have held regular meetings to discuss the theoretical challenges posed by this project
and to explore possible ways of overcoming those challenges.

3 Key Research Accomplishments

• Proof that an obvious generalization of the well-known two-group performance metric,
the AUC, is not useful in classification tasks with three or more groups (Appendix C)

• Development of a novel technique for evaluating the quality of BANN estimates of ideal
observer decision variables in the absence of three-group ROC analysis methodology
and observational data PDFs (Appendix D)

• Detailed investigation of the relationships among the decision boundary lines used by
the three-group ideal observer (Appendix G)

• Analysis of several proposed three-group classification methods in the literature in
terms of the three-group ideal observer (Appendices E, F)

• Development of principled theoretical motivation for proposed three-group classifica-
tion methods given selection of restricted or simplified three-group evaluation method-
ology (Appendices H, I)

• Development and preliminary analysis of a novel utility-based performance metric,
which we hope will generalize better to classification tasks with more than two groups
than does the conventional AUC (Appendix J)
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4 Reportable Outcomes

• D. C. Edwards, C. E. Metz, and R. M. Nishikawa, “The hypervolume under the ROC
hypersurface of ‘near-guessing’ and ‘near-perfect’ observers in N -class classification
tasks,” IEEE Trans. Med. Imag., vol. 24, pp. 293–299, 2005.

• D. C. Edwards and C. E. Metz, “Evaluating Bayesian ANN estimates of ideal observer
decision variables by comparison with identity functions,” in Proc. SPIE Vol. 5749
Medical Imaging 2005: Image Perception, Observer Performance, and Technology As-
sessment, Miguel P. Eckstein and Yulei Jiang, Eds., SPIE, Bellingham, WA, 2005, pp.
174–182. [Conference presentation and proceedings paper.]

• D. C. Edwards and C. E. Metz, “Review of several proposed three-class classification
decision rules and their relation to the ideal observer decision rule,” in Proc. SPIE Vol.
5749 Medical Imaging 2005: Image Perception, Observer Performance, and Technology
Assessment, Miguel P. Eckstein and Yulei Jiang, Eds., SPIE, Bellingham, WA, 2005,
pp. 128–137. [Conference presentation and proceedings paper.]

• Collection of database of 270 mammographic cases containing malignant and benign
clustered microcalcification lesions, with truth determined by pathology (for biopsied
lesions) or mammographic followup (benign lesions only)

• Porting of existing computerized scheme for detecting clustered microcalcifications in
mammograms from legacy computer systems no longer in operation to workstations
currently in use for this project

• D. C. Edwards, C. E. Metz, R. M. Nishikawa, and M. L. Giger, “Investigation of
three-group classifiers to fully automate detection and classification of breast lesions
in computer-aided diagnosis for mammography,” US DOD Breast Cancer Research
Program Era of Hope Meeting, Philadelphia, PA, 2005.

• D. C. Edwards and C. E. Metz, “Restrictions on the three-class ideal observer’s decision
boundary lines,” IEEE Trans. Med. Imag., vol. 24, pp. 1566–1573, 2005.

• D. C. Edwards and C. E. Metz, “Analysis of proposed three-class classification decision
rules in terms of the ideal observer decision rule,” J. Math. Psychol., vol. 50, pp. 478–
487, 2006.

• D. C. Edwards and C. E. Metz, “Optimization of an ROC hypersurface constructed
only from an observer’s within-class sensitivities,” in Proc. SPIE Vol. 6146 Medical
Imaging 2006: Image Perception, Observer Performance, and Technology Assessment,
Yulei Jiang and Miguel P. Eckstein, Eds., SPIE, Bellingham, WA, 2006, pp. 61 460A1–
61 460A7. [Conference presentation and proceedings paper.]

• D. C. Edwards and C. E. Metz, “ROC Analysis in Radiology: The State of the Art, and
Recent N -Class Investigations,” Third Workshop on Receiver Operating Characteristic
Analysis in Machine Learning, Pittsburgh, PA, 2006. (Invited talk.)

• D. C. Edwards and C. E. Metz, “A utility-based performance metric for ROC anal-
ysis of N-class classification tasks,” in Proc. SPIE Vol. 6515 Medical Imaging 2007:
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Image Perception, Observer Performance, and Technology Assessment, Yulei Jiang
and Berkman Sahiner, Eds., SPIE, Bellingham, WA, 2007, pp. 6 515 031–65 150 310.
[Conference presentation and proceedings paper.]

• D. C. Edwards and C. E. Metz, “Optimization of restricted ROC surfaces in three-class
classification tasks,” IEEE Trans. Med. Imag., 2006, (accepted for publication 5 Mar.
2007).

• D. C. Edwards, J. Papaioannou, C. E. Metz, A. V. Edwards, and R. M. Nishikawa,
“Estimating three-class ideal observer decision variables for computerized detection
and classification of mammographic microcalcification lesions,” 2007 (in preparation).

• D. C. Edwards, PI: “N-Class Image Classification for Computer-Aided Breast Cancer
Diagnosis,” application for support under NIH K99/R00 funding mechanism; submit-
ted June 2006, unscored, resubmitted March 2007.

• D. C. Edwards, Project co-Leader under C. E. Metz (Project Leader) and R. M.
Nishikawa (Program PI): “Three-class Receiver Operating Characteristic Analysis for
Evaluation of Computer-Aided Diagnosis,” Project 3 of Program Project Grant “Trans-
lating Computer-Aided Diagnosis (CADx) from the Lab to the Clinic,” application for
support under NIH P01 funding mechanism; submitted Oct. 2006, merit rating 1.7
(overall program priority score: 209), resubmitted May 2007.

5 Conclusions

During the first year of support, we proved that an obvious generalization of the well-known
two-group performance metric, the AUC, is not in fact a useful performance metric for classi-
fication tasks with three or more groups. We developed an evaluation technique, independent
of those we had previously developed, for assessing the ability of BANN decision variables
to accurately estimate ideal observer decision variables. We analyzed several recently pro-
posed three-group classification methods in terms of the three-group ideal observer. We also
showed that the three decision boundary lines used by the three-group ideal observer are not
arbitrary, but are intricately related to one another.

During the second year of support, with the assistance of colleagues in our laboratory, we
collected a database of 134 mammographic cases containing malignant and benign clustered
microcalcification lesions, with truth determined by pathology (for biopsied lesions) or mam-
mographic followup (benign lesions only), and we ported the existing computerized scheme
for detecting clustered microcalcifications in mammograms from legacy computer systems
no longer in operation to workstations currently in use for this project. We reported on the
important theoretical results we had developed to date at the 2005 Breast Cancer Research
Program Era of Hope Meeting. We also developed principled theoretical motivations for
various proposed three-group classification methods, given in each case the selection of a
restricted or simplified three-group evaluation methodology.

Although the first set of images we collected proved unsuitable for our purposes, we were
able during the past year to collect 270 mammographic images and are close to completing
experiments, using these images, designed to evaluate the ability of BANNs to estimate ideal
observer decision variables for mammographic lesion feature data (as opposed to simulated
data). The principal investigator was invited to give a talk at the Third Workshop on
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Receiver Operating Characteristic Analysis in Machine Learning (a conference within the
International Conference on Machine Learning symposium) on the subject of the state of
the art of ROC analysis in radiology and on our recent investigations in classification with
more than two groups. We have also continued to advance our theoretical understanding
of the three-group ideal observer and methods of evaluating its performance. In particular,
we have developed a novel utility-based performance metric which we have reason to believe
may be useful for classification tasks with more than two groups without suffering from the
limitations of more obvious generalizations of the well-known AUC performance metric.

Although our primary research accomplishments have been theoretical, they are crucial
steps in the development of a practical three-group classifier and a fully general three-group
performance evaluation methodology. Despite the considerable difficulties involved in such
development, a CAD scheme incorporating a three-group classifier as we propose could po-
tentially allow radiologists to detect more malignant breast lesions without increasing their
FP biopsy rate. We believe this goal to be worth the necessary effort on our part.
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The Hypervolume Under the ROC Hypersurface of
“Near-Guessing” and “Near-Perfect” Observers in

N -Class Classification Tasks
Darrin C. Edwards*, Charles E. Metz, and Robert M. Nishikawa

Abstract—We express the performance of the -class
“guessing” observer in terms of the 2 conditional
probabilities which make up an -class receiver operating char-
acteristic (ROC) space, in a formulation in which sensitivities are
eliminated in constructing the ROC space (equivalent to using
false-negative fraction and false-positive fraction in a two-class
task). We then show that the “guessing” observer’s performance
in terms of these conditional probabilities is completely described
by a degenerate hypersurface with only 1 degrees of freedom
(as opposed to the 2

1 required, in general, to achieve a
true hypersurface in such a ROC space). It readily follows that the
hypervolume under such a degenerate hypersurface must be zero
when 2. We then consider a “near-guessing” task; that is, a
task in which the underlying data probability density functions
(pdfs) are nearly identical, controlled by 1 parameters which
may vary continuously to zero (at which point the pdfs become
identical). With this approach, we show that the hypervolume
under the ROC hypersurface of an observer in an -class classifi-
cation task tends continuously to zero as the underlying data pdfs
converge continuously to identity (a “guessing” task). The hyper-
volume under the ROC hypersurface of a “perfect” ideal observer
(in a task in which the data pdfs never overlap) is also found
to be zero in the ROC space formulation under consideration.
This suggests that hypervolume may not be a useful performance
metric in -class classification tasks for 2, despite the
utility of the area under the ROC curve for two-class tasks.

Index Terms— -class classification, ROC analysis, ROC per-
formance metrics.

I. INTRODUCTION

WE are attempting to develop a fully automated mass
lesion classification scheme for computer-aided diag-

nosis (CAD) in mammography. This scheme will combine
two schemes developed at the University of Chicago: one for
automatically detecting mass lesions in mammograms [1]–[5],
and one for classifying known lesions as malignant or benign
[6]–[10]. Combining these two types of CAD scheme is inher-
ently difficult, because the output of the detection scheme will
necessarily include false-positive (FP) computer detections in
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addition to the malignant and benign lesions to be classified.
These FP computer detections correspond to objects which
were by design not included in the training sample of the
classification scheme, because they are not members of the
data population (benign and malignant mass breast lesions) for
which the classification scheme was created. It is clear then
that the detection scheme’s output cannot be used unmodified
as the input to the classification scheme.

Our approach has been to treat this problem explicitly as a
three-class classification task. That is, the outputs of the detec-
tion scheme should be classified as malignant lesions, benign
lesions, and nonlesions (FP computer detections), and the clas-
sifier to be estimated is the ideal observer decision function for
this task. Such an approach presents considerable difficulties of
its own. On the one hand, decision functions, in particular ideal
observer decision functions, increase rapidly in complexity with
the number of classes involved. On the other hand, fully general
performance evaluation methods, in particular a fully general
three-class extension of receiver operating characteristic (ROC)
analysis, have yet to be developed for such a task.

Although we have had preliminary success in using Bayesian
artificial neural networks (BANNs) [11], [12] to estimate three-
class ideal-observer-related decision variables [13], [14], the
task of developing an extension of ROC analysis to classifica-
tion tasks with three or more classes has proved somewhat more
daunting. Our initial efforts in this direction have, thus, been
more theoretical than practical so far [15]. One issue we began
to investigate recently was the calculation of an obvious gen-
eralization of the well-known area under the ROC curve (AUC)
performance metric, a quantity we are calling the “hypervolume
under the ROC hypersurface.” Detailed consideration of the in-
tegrals involved in calculating this quantity led us to the coun-
terintuitive conclusion that, despite the great success and utility
of the AUC performance metric in two-class classification tasks,
the hypervolume under the ROC hypersurface does not appear
to be a useful performance metric in -class classification tasks
for . The proof of this claim is arrived at by considering
observer performance in two extremes: the “guessing” observer
and the “perfect” observer. It should be explicitly noted that in
our formulation, sensitivities are eliminated in constructing the
ROC space; this is equivalent to using false-negative fraction
(FNF) and false-positive fraction (FPF) in a two-class task. In
such a formulation, the “guessing” observer in a two-class task
achieves an AUC of 0.5 as expected, but the “perfect” observer
in a two-class task achieves an AUC of zero.

In Section II, we consider the properties of the “guessing”
observer in an -class classification task, and of its ROC

0278-0062/$20.00 © 2005 IEEE
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hypersurface. In Section III, we consider the properties of the
ROC hypersurface of a so-called “near-guessing” observer,
i.e., an observer in a task for which the observational data
probability density functions (pdfs) are not identical, but differ
only by arbitrarily small amounts. In Section IV, we then show
that the hypervolume under the ROC hypersurface of such
a “near-guessing” observer will continuously approach the
hypervolume under the ROC hypersurface of the “guessing”
observer as the observational data pdfs continuously approach
identity; furthermore, the hypervolume under the ROC hyper-
surface of the “guessing” observer is shown to be zero.

We then show in Section V that the hypervolume under the
ROC hypersurface of the “perfect” observer is zero (as expected
by analogy with the two-class task), and that the hypervolume
under the ROC hypersurface of a “near-perfect” observer will
approach zero continuously as the observational data pdfs are
separated. Finally, in Section VI, we argue that these results
taken together imply that the hypervolume under the ROC hy-
persurface is not a useful performance metric in -class classi-
fication tasks for , despite the utility of the AUC perfor-
mance metric in two-class tasks.

II. THE ROC HYPERSURFACE OF THE -CLASS “GUESSING”
OBSERVER

The performance of an observer in an -class classification
task is completely determined by a hypersurface with

degrees of freedom in an -dimensional ROC space
[16]. Without loss of generality, we can specify any point in
the ROC space by a vector of the misclassification probabili-
ties

[15].
Here the classes are denoted by the labels de-
notes the class to which an observation is assigned (the “de-
cision”); and is the class to which it actually belongs (the
“truth”). We use boldface type to denote statistically variable
quantities. For simplicity, we write as .

We can also, again without loss of generality, consider the
ROC hypersurface to be given by considered as a function
of the other misclassification probabilities [15].
Note that this formulation is equivalent, in a two-class classi-
fication task, to using FPF and FNF to characterize the ROC
curve, rather than FPF and true-positive fraction (TPF), as is
more common. In a two-class classification task, this produces
ROC curves which are “upside-down” with respect to the stan-
dard formulation; we have adopted the nonstandard formulation
described above because it has proven easier to generalize to
classification tasks with more than two classes.

Some researchers have suggested [17], [18] that in, e.g., a
three-class classification task, the set of three “sensitivities”
( in our notation) provides a complete de-
scription of observer performance. This is incorrect in general,
because it ignores the misclassification probabilities,
not all of which are determined uniquely by the “sensitivi-
ties” when unless particular restrictions are imposed
on the observer’s behavior. Complete quantification of the
trade-offs available among the probabilities of various kinds

of misclassification error is important in medical diagnosis,
where different misclassification errors often have substan-
tially different clinical consequences. Moreover, restrictions
concerning the observer’s behavior are inappropriate when
considering the general behavior of ideal observers, human
observers, or automated observers (such as automated schemes
for computer-aided diagnosis) designed to approximate ideal
or human observer behavior. Other researchers have reduced
the three-class ROC hypersurface to more tractable two-dimen-
sional surfaces in three-dimensional ROC spaces by explicitly
imposing restrictions on the form of the observer’s decision
rule [19], [20], or on the utilities used by an ideal observer
[21]. While such restrictions may ultimately prove to be of
great pragmatic importance given the inherent complexity of
multi-class classification tasks, our approach so far has been
to attempt as general an understanding as possible of the
unrestricted classification task.

Consider the performance of an observer which makes de-
cisions by “guessing,” that is, in a random fashion unrelated
to the actual class from which a given observation is drawn.
(Note that this corresponds to the performance of the ideal ob-
server when the pdfs of the observational data are identical, i.e.,

.) In this case, we
clearly must have

(1)

(2)

(3)

Defining for , and ,
we see that the performance of the “guessing” observer is given
by a locus of vectors of the form

...
...

...
...

...

(4)

where all of the are restricted to the range . Furthermore,
note that

(5)
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which immediately gives . Thus, the per-
formance of the “guessing” observer is given by

...

...

...

...

...

...

...
...

...
...

...

(6)

This is the parametric equation for an -dimensional plane
in an -dimensional space; the actual performance of
the “guessing” observer will of course be further restricted to a
region within this plane such that

.

III. THE ROC HYPERSURFACE OF AN -CLASS

“NEAR-GUESSING” OBSERVER

Consider observational data drawn from pdfs

(7)

(8)

(9)

where , and
for . In the limit as the all approach

zero, we expect the performance of any observer for this task to
converge smoothly to that of the “guessing” observer.

Decisions are made by partitioning the decision variable
space into regions, determined by a total of
parameters; we denote these parameters by the components of
a vector . An observer which uses more than
parameters for an -class classification task can always be
replaced by a simplified observer, such that the “excess” param-
eters are eliminated by the requirement that be minimized,
thereby collapsing the dimensionality of the parameter space to

. On the other hand, an observer which uses fewer
than decision parameters will fail to generate a
true ROC hypersurface—i.e., one with degrees
of freedom in the -dimensional ROC space. (An ex-
ample in a three-class classification task would be an observer
which sequentially performs a pair of binary classification
tasks by first classifying observations as being “ ” or “not

” based on the value of a single decision parameter, and then
further classifying the “not ” observations as “ ” or “ ”

based on the value of a second decision parameter [17], thus
depending on fewer than the five degrees of freedom needed in
a three-class classification task.) Such “degenerate” observers
will not be considered here (apart from the “guessing” observer
itself).

We can, thus, define regions which partition the original
data space, given particular values of the parameters , by

(10)

(11)

(12)

For a nonrandom observer, the can be expected to depend
implicitly on the pdfs (7)–(9) and, therefore, on the . The mis-
classification probabilities which define the ROC hypersurface
are then given by

...

...

...

...

...

...

...

...

...

...

...

...

(13)

Using (7) and (8), we can rewrite this as

...

...

...

...

...

...

...

...

...

...

...

...

(14)
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Defining the functions allows us to sim-
plify the notation slightly

P12

P13
...

P1N
...

Pi1

...
Pij fi 6= jg

...
PiN

...
P (N�1

...
PN1

=

P1N + �2H12

P1N + �3H13

...
P1N

...
PiN + �1Hi1

...
PiN + �jHij fi 6= jg

...
PiN

...
PN N + �N�1HN(N�1)

...
PN N + �1HN1

: (15)

Now of course ; for simplicity, we will
write . Equation (15) can now be written as

P12

P13
...

P1N
...

Pi1

...
Pij fi 6= jg

...
PiN

...
P (N�1)

...
PN1

=

�1 + �2H12

�1 + �3H13

...
�1
...

�i + �1Hi1

...
�i + �jHij fi 6= jg

...
�i

...
1� N�1

j=1 �j + �N�1HN(N�1)

...
1� N�1

j=1 �j + �1HN1

(16)

which further simplifies to
P12

P13
...

P1N
...

Pi1

...
Pij fi 6= jg

...
PiN

...
P (N�1)

...
PN1

=

�1

�1

�1
...

N � 1 elements

...
�i

�i

...

N � 1 elements

...
1� N�1

j=1 �j

1� N�1
j=1 �j

...

N � 1 elements

+

N�1

j=1

�j ~wj (17)

where the vectors have components which depend only on
. The first term on the right-hand side of this equation is just

the expression for the “guessing” observer [cf. the left-hand side
of (6)]. The other term on the righthand side of this equation
tends to zero as the tend to zero. Note that the may in
general depend on the via (10)–(12), but

(18)

Thus, the are bounded, and will possess Taylor expansions
in (i.e., will not depend on terms of the form for posi-
tive integers ). Therefore, operating points on the ROC hyper-
surface of a “near-guessing” observer tend continuously toward
points on the ROC hypersurface of the “guessing” observer.
Note that the terms , are not all independent,
since they all depend implicitly for fixed on the
decision parameters . That is, the ROC hypersurface given by
(17) possesses only degrees of freedom.

IV. THE HYPERVOLUME UNDER THE ROC HYPERSURFACE OF

AN -CLASS “NEAR-GUESSING” OBSERVER

In the preceding section, it was shown that the ROC hyper-
surface of a “near-guessing” observer tends continuously to
the ROC hypersurface of a “guessing” observer as the pdfs of
the observational data tend arbitrarily toward identical distri-
butions. Intuitively, one would expect that the hypervolumes
under these hypersurfaces should also tend toward each other.
Since intuition can occasionally be an unreliable guide in
analyzing -class classification tasks, it would be reassuring if
the results of the preceding section could be applied directly to
the calculation of the relevant hypervolumes.

For this section, we will write as , emphasizing
that it is a function of the decision parameters chosen. We, thus,
rewrite (15) to obtain

P12(~)

P13(~)
...

P1N (~)
...

Pi1(~)
...

Pij(~) fi 6= jg
...

PiN (~)
...

PN;(N�1)(~)
...

PN;1(~)

=

P1N (~) + �2H12(~)

P1N (~) + �3H13(~)
...

P1N (~)
...

PiN (~) + �1Hi1(~)
...

PiN (~) + �jHij(~) fi 6= jg
...

PiN (~)
...

PN;(N�1)(~)
...

PN;(N�1)(~)� �N�1HN(N�1)(~)

+�1HN1(~)

: (19)
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To find the hypervolume under the ROC sur-
face given by considered as a function of

, one must
evaluate the integral

(20)

(The domain of the integral is simply the set of all such that
is defined.) Note that, for the “guessing” observer, we ex-

pect this integral to be zero when due to dimension-
ality considerations—the ROC hypersurface has only
degrees of freedom (cf. (6)), not the required in
this -dimensional ROC space. To see this explicitly,
one can rearrange the order of integration and consider the in-
nermost integral for fixed values of the other
misclassification probabilities. Then the limits of integration of
this innermost definite integral become, again by (6)

(21)

which is zero by inspection.
We now return to the general case of a “near-guessing” ob-

server. One way to evaluate the integral in (20) is to reexpress
it explicitly in terms of the decision parameters , via the Jaco-
bian
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where the vertical bars indicate that the determinant of the en-
closed matrix is to be taken, and where denotes the th com-
ponent of . (We assume that indices of the parameters have
been chosen appropriately so that no negative sign is introduced,
i.e., volumes remain positive.) For the “guessing” observer, this
reduces to
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where . For a “near-
guessing” observer, we combine (19) and (22) to obtain

...
...

...

...
...

...

...
...

...

...
...

...

(24)

From the properties of determinants [22], it can be shown that,
to first order in the ,

(25)

where the are bounded and continuous with respect to the .
If we denote the hypervolume under the ROC hypersurface

of the “guessing” observer by

(26)

then the hypervolume under the ROC hypersurface of a “near-
guessing” observer becomes, again to first order in the

(27)

(28)

where the integrals are bounded (i.e., they may depend on
higher integral powers of , but not on for positive integers

). That is, in the limit as the tend toward zero, tends
toward in a continuous fashion.

V. THE HYPERVOLUME UNDER THE ROC HYPERSURFACE OF

AN -CLASS “NEAR-PERFECT” OBSERVER

In the preceding sections, we established that the hyper-
volume under the ROC hypersurface of a “guessing” observer
is zero, and furthermore that this result is not singular: an
observer in a “near-guessing” task will achieve a ROC hy-
persurface with hypervolume approaching zero continuously
as the data pdfs approach identity. An ideal observer in a
“perfect” task—i.e., in which the data pdfs never overlap—will
also achieve a ROC hypersurface with zero hypervolume,
because it can achieve the operating point and, thus, will
not, for any rational decision rule, achieve points interior to
the unit hypercube defining ROC space. It is reasonable to ask
whether “near-perfect” observers, performing tasks for which
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the overlap in the underlying data pdfs is nearly negligible,
behave similarly to “near-guessing” observers, in the sense
that the hypervolume under the ROC hypersurface of such an
observer will approach zero in a continuous fashion.

Consider observational data drawn from pdfs
where . We denote the mean of

by and note that, without loss of generality, the mean of
can be taken to be . Furthermore, note that we

can apply a linear transformation to the data and, thus, effec-
tively to the , such that each of the resulting is either 1)
mutually orthogonal to, or 2) a scalar multiple of, any of the
other . Because the transformation applied is linear, the ideal
observer for this task will remain the same, and hence the task
itself can be considered essentially unchanged.

Let us consider now an observer for this task which is gener-
ally not ideal; in fact, we will consider only a single operating
point achieved by this observer. The observer decides
for a given observation if

(29)

with equality for any such relation between two classes being
decided in an arbitrary but consistent manner. That is, the ob-
server places hyperplanes between the means of any two classes
when attempting to decide between those classes (rather than
placing those hyperplanes in the likelihood ratio decision vari-
able space, as would the ideal observer).

Now suppose the task is made slightly “easier,” while the ob-
server itself remains unchanged. That is, consider the mean of
one pdf, say for , being increased by a factor for

, while the location of the decision hyperplanes does
not change, except in the special case where for some
other pdf (again with ). In this latter case we increase both
means , and the location of
the corresponding decision hyperplane shifts accordingly.

Note that is now further away from each decision hyper-
plane relevant to in (29). In the case , the
decision hyperplane is now a distance of

from . For noncollinear , the direc-
tion from to the decision hyperplane is given by , and
since and are orthogonal, ;
since this quantity is negative, it follows that is further from
that decision plane than .

It immediately follows from this that none of the misclassifi-
cation probabilities making up the coordinates of the observer’s
operating point can increase when moving from the old task to
the new one. To see this, consider a change of coordinates in
the data space such that is now the origin. All of the deci-
sion hyperplanes separating this class from the others are effec-
tively moving away from the center of its pdf; since the hyper-
planes are translating without rotating, we see immediately that
the probability cannot decrease (and will increase in gen-
eral), while the other probabilities cannot increase
(and will decrease in general).

Note that any pdf must decrease more rapidly than
for sufficiently large , where is the dimensionality of . This
allows us to state qualitatively the sense in which the observer
under consideration is “near-perfect”: we hypothesize that the

Fig. 1. Operating point of an observer in a two-class classification task with
coordinates (FPF ;FNF ), denoted by the point at the lower left corner of
the crosshatched region. Since no rational observer will achieve points in the
crosshatched region, the area under this observer’s ROC curve cannot be greater
than 1 � (1� FPF )(1� FNF ).

are all sufficiently large that this limiting condition is met.
Given this condition, the only situation in which an error prob-
ability will fail to decrease is if this probability is
already zero. By allowing all of the to increase in the manner
described above, we can clearly obtain in general a situation in
which each of the misclassification probabilities is either de-
creasing, or equal to zero.

This implies that the hypervolume under the ROC hypersur-
faces of the observers under consideration (however we chose
to define their decision rules for operating points other than
those described above) must also decrease as the task is made
“easier” as described above. To see this, note that if a given
observer achieves an operating point on its ROC hypersur-
face, it cannot achieve another point such that the compo-
nents of these points satisfy (be-
cause such an observer could be replaced by an observer which
achieved for all such points by using the original decision
rule for the point , thereby achieving unambiguously better
performance at those points). Thus, knowing that a given ob-
server achieves an operating point of implies that that ob-
server’s ROC hypersurface must have a hypervolume under it
of no greater than ; as the (nonzero) de-
crease, this upper limit on the hypervolume must also decrease
to zero. This point is illustrated in Fig. 1 for the two-class case;
here the observer’s false-negative fraction, , corresponds
to , and the false-positive fraction, , corresponds to

.
To summarize, we have shown that the known operating point

of our simple observer will move closer to the origin for arbi-
trary data pdfs as those pdfs are moved further apart (i.e., as
the underlying task is made “easier”), implying that the hyper-
volume under its ROC hypersurface will also converge to zero.
In fact, reasoning as above, one can see that the ideal observer
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will also be unable to achieve operating points within the re-
gion , since the ideal observer’s
ROC hypersurface is never above that of any other observer at
any given point in the domain of the ROC space [15]. The hy-
pervolume under the ideal observer’s ROC hypersurface will,
thus, also converge to zero as the underlying data pdfs are moved
apart.

VI. CONCLUSION

In -class classification tasks where , it can be shown
that the hypervolume under the ROC hypersurface of both the
“guessing” observer and the “perfect” observer are zero. More
importantly, we have shown in each of these performance ex-
tremes that the convergence to zero is smooth rather than discon-
tinuous. This convergence can be considered completely gen-
eral for “near-guessing” observers and generally true for “near-
perfect” observers which follow rational decision rules (analo-
gous to false-negative fraction and false-positive fraction being
monotonically related in a two-class task); that is, the conclu-
sions appear to hold true for arbitrary underlying data pdfs.

In the two-class classification task, the area under the ROC
curve (AUC) is considered a useful performance metric for a va-
riety of reasons. One of the most pleasing and straightforward
of these is the simple relationship between AUC and the “sep-
arability” of the two underlying data pdfs (i.e., the difficulty of
the task). Namely, the AUC (with the two-class ROC defined as
a plot of false-negative fraction versus false-positive fraction)
of a “perfect” observer is zero, and increases in some sense uni-
formly as the task is made more difficult, until one arrives at the
“guessing” observer with an AUC of 0.5. In an -class classi-
fication task, this straightforward relationship appears to break
down, and both “perfect” and “guessing” observers yield ROC
hypersurfaces with zero hypervolume. It would appear that, due
to this ambiguity, hypervolume under the ROC hypersurface of
an -class observer is not a useful performance metric: Does
a hypervolume of 0.005 indicate an observer faced with an ex-
ceptionally difficult or exceptionally easy task? One hopes that
some other performance metric from two-class classification
can be generalized usefully for -class classification; perhaps
a quantity which is equal to AUC in the two-class case has a
generalization which is not equal to the hypervolume, but can
be shown to be of use for other reasons.
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ABSTRACT

Bayesian artificial neural networks (BANNs) have proven useful in two-class classification tasks, and are claimed
to provide good estimates of ideal-observer-related decision variables (the a posteriori class membership probabil-
ities). We wish to apply the BANN methodology to three-class classification tasks for computer-aided diagnosis,
but we currently lack a fully general extension of two-class receiver operating characteristic (ROC) analysis to
objectively evaluate three-class BANN performance. It is well known that “the likelihood ratio of the likelihood
ratio is the likelihood ratio.” Based on this, we found that the decision variable which is the a posteriori class
membership probability of an observational data vector is in fact equal to the a posteriori class membership
probability of that decision variable. Under the assumption that a BANN can provide good estimates of these a

posteriori probabilities, a second BANN trained on the output of such a BANN should perform very similarly to
an identity function. We performed a two-class and a three-class simulation study to test this hypothesis. The
mean squared error (deviation from an identity function) of a two-class BANN was found to be 2.5× 10−4. The
mean squared error of the first component of the output of a three-class BANN was found to be 2.8× 10−4, and
that of its second component was found to be 3.8× 10−4. Although we currently lack a fully general method to
objectively evaluate performance in a three-class classification task, circumstantial evidence suggests that two-
and three-class BANNs can provide good estimates of ideal-observer-related decision variables.

Keywords: Bayesian artificial neural networks, ideal observers, three-class classification

1. INTRODUCTION

In the past, computerized methods for the detection1–5 and classification6–11 of mammographic mass lesions have
been investigated at the University of Chicago. The classification scheme currently analyzes lesions which have
been manually identified by a radiologist. We are attempting to develop a fully automated classification scheme
by combining the existing detection and classification schemes; we have argued previously12 that this will require
a three-class classifier to account for the presence of false-positive (FP) computer detections, in addition to the
malignant and benign lesions, in the output of the detection scheme.

For some time now we have explored the use of Bayesian artificial neural networks (BANNs) for a variety of
detection5, 13, 14 and classification11 tasks in computer-aided diagnosis (CAD). Our motivation for investigating
BANNs is based, first, on our theoretical observation that, in the limit of infinite training data, a BANN will
yield an ideal observer decision function for that data population;15 and second, on empirical observations
that even given a finite sample of training data, a BANN can estimate an ideal observer decision function
reasonably well.16 (We note that the BANN implementation we are using is that of MacKay,17 which employs a
multivariate normal function for the prior distribution on the network weight values.) We have also performed
simulation studies showing that BANNs can accurately estimate ideal observer decision variables in a three-class
classification task.15 Moreover, we showed recently that a three-class BANN could produce decision variables for
actual mammographic mass lesion feature data, and that these decision variables are related to two-class BANN
decision variable data in a particular way consistent with a theoretical relationship between three-class and two-
class ideal observer decision variables.12 We consider this to be strong circumstantial evidence for the ability
of a BANN to estimate three-class ideal observer decision variables, though we currently lack a fully general
method for evaluating three-class classifiers (i.e., a three-class extension to receiver operating characteristic
(ROC) analysis).

∗Correspondence: E-mail: d-edwards@uchicago.edu; Telephone: 773 834 5094; Fax: 773 702 0371



In this work, we present further circumstantial evidence toward the claim that a BANN can provide good
estimates of three-class ideal observer decision variables. We develop a theoretical relationship between the
a posteriori class membership probabilities of a given observational data variable and the a posteriori class
membership probabilities of those a posteriori probabilities treated as a set of observational data in their own
right. (It is known that a posteriori class membership probabilities are equivalent to ideal observer decision
variables in a two-class task,16 and related in a straightforward way to the ideal observer decision variables in a
task with three or more classes.15) We then describe simulation studies to train and test a set of BANNs, and
present results of such a simulation study verifying that the BANNs we examined did indeed obey the theoretical
relationship predicted for ideal observer decision variables, to within experimental error. In the final section, we
present our conclusions drawn from this work.

2. THEORY

It is well known that the ideal observer decision variable, i.e., the likelihood ratio or any monotonic transformation
of this value, yields optimal performance in a two-class classification task.18 It can also be shown, in a classification
task with N classes (N > 2), that the ideal observer decision rule becomes more complicated than a simple
threshold on a single decision variable, but that the optimal decision variables remain a set of N − 1 likelihood
ratios.18, 19

We can define the ith likelihood ratio as

Λi ≡ LRi(~x) ≡
p(~x|πi)

p(~x|πN )
, (1)

where ~x represents statistically variable observational data (which we assume to have dimensionality n), and
πj represents one of the N classes from which the data are drawn (here 1 ≤ i ≤ N − 1). Clearly the vector
(of dimensionality N − 1) of decision variables Λi is itself statistically variable, and one might ask what the
likelihood ratios of these variables are. In fact,20

p(~Λ|πi) =

∫

· · ·

∫

∑

j

p(~xj |πi)

|J(~xj)|
dxN . . . dxn

=

∫

· · ·

∫

∑

j

LRi(~xj)
p(~xj |πN )

|J(~xj)|
dxN . . . dxn, (2)

where we have assumed that N − 1 < n; if N − 1 = n, then no integration is performed. (If N − 1 > n, then
at least one of the likelihood ratio decision variables will be expressible as a function of the others; we will not
consider this degenerate case here.) The sum is over all solutions to Eq. 1 for a given ~Λ; this yields

p(~Λ|πi) =

∫

· · ·

∫

∑

j

Λi

p(~xj |πN )

|J(~xj)|
dxN . . . dxn

= Λi

∫

· · ·

∫

∑

j

p(~xj |πN )

|J(~xj)|
dxN . . . dxn

= Λi p(~Λ|πN )

p(~Λ|πi)

p(~Λ|πN )
≡ LRi(~Λ) = Λi, (3)

the source of the well-known adage that “the likelihood ratio of the likelihood ratio is the likelihood ratio.”

Consider now a different set of decision variables, the a posteriori class membership probabilities considered
as functions of the statistically variable observational data

yi ≡ P (πi|~x). (4)



(Since P (πN |~x) = 1−
∑N−1

i=1 P (πi|~x), we still have N−1 decision variables.) Note that in a two-class classification
task, this decision variable is known to be a monotonic function of the likelihood ratio, and is therefore an ideal
observer decision variable;16 while in a classification task with more than two classes, the a posteriori class
membership probabilities can be shown to be related to the likelihood ratios in a straightforward way.15

Reasoning as above, we may ask what the a posteriori class membership probability of these decision variables,
or P (πi|~y), is. In fact,

P (πi|~x) =
p(~x|πi)P (πi)

p(~x)

=
p(~x|πi)P (πi)

∑N

k=1 p(~x|πk)P (πk)

=
LRi(~x)P (πi)/P (πN )

1 +
∑N−1

k=1 LRk(~x)P (πk)/P (πN )
, (5)

and this relation can also be inverted to yield

LRi(~x) =
P (πi|~x)

1−
∑N−1

k=1 P (πk |~x)P (πk)/P (πN )

=
yi

1−
∑N−1

k=1 ykP (πk)/P (πN )
. (6)

We again start with Eq. 2, this time obtaining

p(~y|πi) =

∫

· · ·

∫

∑

j

LRi(~xj)
p(~xj |πN )

|J(~xj)|
dxN . . . dxn

=

∫

· · ·

∫

∑

j

yi

1−
∑N−1

k=1 ykP (πk)/P (πN )

p(~xj |πN )

|J(~xj)|
dxN . . . dxn

=
yi

1−
∑N−1

k=1 ykP (πk)/P (πN )

∫

· · ·

∫

∑

j

p(~xj |πN )

|J(~xj)|
dxN . . . dxn

=
yi

1−
∑N−1

k=1 ykP (πk)/P (πN )
p(~y|πN ), (7)

where the sums in j are over all solutions to Eq. 4 for a given ~y. (The fraction can be taken out of the integral
because the relations in Eqs. 5 and 6 are one-to-one, and thus the set of all solutions to Eq. 4 correspond to a
single value of LRi( ~xj).) This again yields

LRi(~y) = LRi(~xj) (8)

where ~y is the vector of a posteriori class membership probabilities of ~x from Eq. 4, and ~xj is any solution to
that equation for a given ~y.

It follows that

P (πi|~y) =
LRi(~y)P (πi)/P (πN )

1 +
∑N−1

k=1 LRk(~y)P (πk)/P (πN )

=
LRi(~xj)P (πi)/P (πN )

1 +
∑N−1

k=1 LRk(~xj)P (πk)/P (πN )

= P (πi|~xj) = yi, (9)

where ~xj is again any solution to Eq. 4 for a given ~y. This shows that a similar adage to that for likelihood ratios
holds true, namely that “the a posteriori class probabilities of the (data) a posteriori class probabilities are the
(data) a posteriori class probabilities.”



3. MATERIALS AND METHOD

We have shown in the past16 that a BANN can provide good estimates of the a posteriori class membership
probabilities in a two-class classification task, and we have presented the results of simulation studies15 and
experiments with real mammographic feature data12 strongly suggesting that the same holds true for three-class
BANNs as well. The theoretical relationship given by Eq. 9, derived in the preceding section, provides a basis
for another simulation study which should provide further circumstantial evidence for the claim that two-class
and three-class BANNs can provide good estimates of the two- and three-class a posteriori class membership
probabilities (directly related to the ideal observer decision variables via Eq. 5), respectively.

Specifically, for the two-class simulation study, we drew 500 samples pseudorandomly from each of two
distributions:

p(x|π1) ≡ N(x; µ1 = 1, σ2
1 = 2) (10)

p(x|π2) ≡ N(x; µ2 = 0, σ2
2 = 1). (11)

We then trained a two-class BANN with one input, five hidden units, and one output on this data, obtaining a
classifier we denote by

y = B2
1(x). (12)

(The superscript denotes the number of classes being classified.) We then used this output, given the known
truth states for the original observations x from which it was obtained, as training data for a second BANN with
one input, five hidden units, and one output:

z = B2
2(y). (13)

Finally, we pseudorandomly sampled an independent testing set of 500 observations x from each of the two
classes given in Eqs. 10 and 11. This testing set was used as input to the first BANN to obtain a testing set
ytest; this in turn was given as input to the second BANN, for which the output was ztest.

Given Eq. 9, together with the assumption that an adequately trained two-class BANN yields good estimates
of the a posteriori class membership probabilities of the observations being classified, it should be the case that
ztest estimates ytest at least to within experimental error. To verify this, we plotted ztest as a function of ytest

for each of the two classes, and we computed the mean squared error

MSE2 =
1

1000

∑

(ztest − ytest)2, (14)

where the sum is over all the observations in the two classes.

Similarly, for the three-class simulation study, we drew 500 two-dimensional samples pseudorandomly from
each of three distributions:

p(~x|π1) ≡ N

(

~x; ~µ1 =

[

1
0

]

, Σ1 =

[

4 .75× 2
.75× 2 1

])

(15)

p(~x|π2) ≡ N

(

~x; ~µ2 =

[

0
2

]

, Σ2 =

[

1 −.4× 1.5
−.4× 1.5 2.25

])

(16)

p(~x|π3) ≡ N

(

~x; ~µ3 =

[

0
0

]

, Σ3 =

[

1 0
0 1

])

(17)

We then trained a three-class BANN with two inputs, five hidden units, and two outputs on this data, obtaining
a classifier we denote by

~y = B3
1(~x). (18)

We then used this output, given the known truth states for the original observations ~x from which it was obtained,
as training data for a second BANN with two inputs, five hidden units, and two outputs:

~z = B3
2(~y). (19)
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Figure 1. Output of the second two-class BANN as a function of its input for the observations actually drawn from class
π1 in the two-class simulation study.

Finally, we pseudorandomly sampled an independent testing set of 500 observations ~x from each of the three
classes given in Eqs. 15-17. This testing set was used as input to the first BANN to obtain a testing set ~y test;
this in turn was given as input to the second BANN, for which the output was ~z test.

Again, given Eq. 9, together with the assumption that an adequately trained two-class BANN yields good
estimates of the a posteriori class membership probabilities of the observations being classified, it should be the
case that ztest

1 estimates ytest
1 , and ztest

2 estimates ytest
2 , at least to within experimental error. To verify this, we

plotted ztest
1 as a function of ytest

1 , and ztest
2 as a function of ytest

2 , for each of the three classes, and we computed
the mean squared errors

MSE3i =
1

1500

∑

(ztest
i − ytest

i )2, (20)

{i : 1, 2}, where the sum is over all the observations in the three classes.

4. RESULTS

Figure 1 shows ztest as a function of ytest for the observations in class π1, and Fig. 2 shows ztest as a function
of ytest for the observations in class π2 from the two-class simulation study. The mean squared error for the
complete set of 1000 observations was 2.5× 10−4.

Figure 3 shows the components of ~z test as a function of the corresponding components of ~y test for the
observations in class π1. Similarly Fig. 4 shows the components of ~z test as a function of the corresponding
components of ~y test for the observations in class π2, and Fig. 5 shows the components of ~z test as a function of
the corresponding components of ~y test for the observations in class π3. The mean squared error for the complete
set of 1500 observations was 2.8× 10−4 for the first component and 3.8× 10−4 for the second component.

5. DISCUSSION AND CONCLUSIONS

We developed a theoretical relationship between the a posteriori class membership probabilities, directly related
to ideal observer decision variables, and the a posteriori class membership probabilities of those a posteriori

class membership probabilities treated as statistically variable observer data in their own right. The identity
relationship found is, perhaps unsurprisingly, quite similar in spirit to the identity relationship between the
likelihood ratio decision variables and the likelihood ratio of those likelihood ratio decision variables for a given
task.
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Figure 2. Output of the second two-class BANN as a function of its input for the observations actually drawn from class
π2 in the two-class simulation study.
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Figure 3. The (a) first and (b) second components of the output of the second three-class BANN as a function of the
corresponding component of its input for the observations actually drawn from class π1 in the three-class simulation study.
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Figure 4. The (a) first and (b) second components of the output of the second three-class BANN as a function of the
corresponding component of its input for the observations actually drawn from class π2 in the three-class simulation study.
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Figure 5. The (a) first and (b) second components of the output of the second three-class BANN as a function of the
corresponding component of its input for the observations actually drawn from class π3 in the three-class simulation study.



We currently lack a fully general method for three-class classification or for practically evaluating the perfor-
mance of a three-class classifier. As a first step toward such a classification method, we are investigating the use
of BANNs to estimate three-class ideal observer decision variables for such a task. Since, in a practical situation,
we will not have access to the underlying probability distributions from which the observational data are drawn,
we must rely on circumstantial evidence in support of our claim that a three-class BANN can adequately estimate
decision variables directly related to ideal observer decision variables.

Previously, we presented work relating the output of a three-class BANN to the outputs of two-class BANNs
trained for various “simplified” cases in which the three-class classification task was reduced to a two-class
classification task, and showed that the relationships found were consistent with the relationship between three-
and two-class ideal observers for the same tasks.12 In the present work, we showed that the output of two- and
three-class BANNs was consistent, to within experimental error, with the theoretical relationship developed for
actual a posteriori class membership probabilities. This is of limited practical use in the complete development of
a three-class classifier, mainly because the three-class ideal observer decision rule is considerably more complicated
than its two-class counterpart (a simple threshold on a single decision variable). It does, however, bolster our
confidence in the choice of the BANN as an appropriate tool for estimating the decision variables which would
eventually be incorporated in such a classifier.
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Review of several proposed three-class classification decision

rules and their relation to the ideal observer decision rule

Darrin C. Edwards∗ and Charles E. Metz

Department of Radiology, The University of Chicago, Chicago, IL 60637

ABSTRACT

We analyzed a variety of recently proposed decision rules for three-class classification from the point of view of
ideal observer decision theory. We considered three-class decision rules which have been proposed recently: one
by Scurfield, one by Chan et al., and one by Mossman. Scurfield’s decision rule can be shown to be a special
case of the three-class ideal observer decision rule in two different situations: when the pair of decision variables
is the pair of likelihood ratios used by the ideal observer, and when the pair of decision variables is the pair of
logarithms of the likelihood ratios. Chan et al. start with an ideal observer model, where two of the decision
lines used by the ideal observer overlap, and the third line becomes undefined. Finally, we showed that the
Mossman decision rule (in which a single decision line separates one class from the other two, while a second line
separates those two classes) cannot be a special case of the ideal observer decision rule. Despite the considerable
difficulties presented by the three-class classification task compared with two-class classification, we found that
the three-class ideal observer provides a useful framework for analyzing a wide variety of three-class decision
strategies.

Keywords: ROC analysis, three-class classification, ideal observer decision rules

1. INTRODUCTION

We are attempting to develop a fully automated mass lesion classification scheme for computer-aided diagnosis
(CAD) in mammography. This scheme will combine two schemes developed at the University of Chicago: one for
automatically detecting mass lesions in mammograms,1–5 and one for classifying known lesions as malignant or
benign.6–10 Combining these two types of CAD scheme is inherently difficult, because the output of the detection
scheme will necessarily include false-positive (FP) computer detections in addition to the malignant and benign
lesions to be classified. These FP computer detections correspond to objects which were by design not included
in the training sample of the classification scheme, because they are not members of the data population (benign
and malignant mass breast lesions) for which the classification scheme was created. It is clear then that the
detection scheme’s output cannot be used unmodified as the input to the classification scheme.

Our approach has been to treat this problem explicitly as a three-class classification task. That is, the
outputs of the detection scheme should be classified as malignant lesions, benign lesions, and non-lesions (FP
computer detections), and the classifier to be estimated is the ideal observer decision rule for this task. Such
an approach presents considerable difficulties of its own. On the one hand, decision rules, in particular ideal
observer decision rules, increase rapidly in complexity with the number of classes involved. On the other hand, a
fully general performance evaluation method, such as a three-class extension of receiver operating characteristic
(ROC) analysis, has yet to be developed.

The explicit form of the ideal observer in a three-class classification task has been known for some time.11

For the reasons just stated, however, a practical method for estimating and evaluating observer performance
based on an ideal observer model has proven elusive, despite the success of the two-class binormal ideal observer
model.12 Nevertheless, pragmatic observer decision rule models for three-class classification tasks have been
proposed relatively recently by several groups of researchers. In some cases, these models are motivated more
by considerations of tractability than of complete generality. This is of course understandable given the inherent
difficulties of three-class classification; however, we thought it might be of interest to analyze a number of recently
proposed three-class decision rule models within an ideal observer decision rule framework.

∗Correspondence: E-mail: d-edwards@uchicago.edu; Telephone: 773 834 5094; Fax: 773 702 0371



In the next section, we review the three-class ideal observer decision rule. In the following three sections, we
review recently proposed three-class decision rule models: one by Scurfield,13 one by Chan et al.,14 and one by
Mossman.15 In each case, the given decision rule is analyzed in terms of the ideal observer decision rule; where
necessary or expedient, assumptions are made about the observer’s decision variables in order to facilitate this
analysis. We emphasize that we do not attempt a review of the experimental methods in the works discussed;
we are specifically interested only in the form of the decision rule which serves as the starting point for each
work. The results of our analyses are briefly summarized in Sec. 6.

2. THE THREE-CLASS IDEAL OBSERVER

It can be shown11, 16 that an N -class ideal observer makes decisions regarding statistically variable observations
~x by partitioning a likelihood ratio decision variable space, where the boundaries of the partitions are given by
hyperplanes:

decide d = πi iff
N−1
∑

k=1

(Ui|k − Uj|k)P (t = πk)LRk ≥ (Uj|N − Ui|N )P (t = πN ) {j < i} (1)

and
N−1
∑

k=1

(Ui|k − Uj|k)P (t = πk)LRk > (Uj|N − Ui|N )P (t = πN ) {j > i}. (2)

Here Ui|j is the utility of deciding an observation is from class πi given that it is actually from class πj , and the
N − 1 likelihood ratios are defined as

LRi ≡
p~x(~x|t = πi)

p~x(~x|t = πN )
(3)

for i < N . We also define the actual class (the “truth”) to which an observation belongs as t, and the class to
which it is assigned (the “decision”) as d, where t and d can take on any of the values π1, . . . , πi, . . . , πN , the
labels of the various classes. (We use boldface type to denote statistically variable quantities.)

The partitioning of the decision variable space is determined by the parameters

γijk ≡ (Ui|k − Uj|k)P (t = πk), (4)

with i, j, and k varying from 1 to N , and j 6= i. Note that these parameters are not independent, however,
because

γijk = γkjk − γkik . (5)

We can impose the reasonable condition that the utility for correctly classifying an observation from a given
class should be greater than any utility for incorrectly classifying an observation from the same class, i.e.,
Ui|i > Uj|i {i 6= j}. This gives, for j 6= i,

γiji > 0, (6)

leaving N(N − 1) parameters (the rest are derivable from Eq. 5).

Finally, note that the hyperplanes represented by Eqs. 1 and 2 are unchanged if we multiply all of these
equations by a single scalar, such as 1/(

∑

i6=j γiji). This leaves us with N2 − N − 1 degrees of freedom, as
expected.

The behavior of a three-class ideal observer is completely determined by the three decision boundary lines

γ121LR1 − γ212LR2 = γ313 − γ323 (7)

γ131LR1 + (γ232 − γ212)LR2 = γ313 (8)

(γ131 − γ121)LR1 + γ232LR2 = γ323, (9)
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Figure 1. Example three-class ideal observer decision rule, given the values of the decision parameters γ121 = γ212 = 3/14
and γ131 = γ313 = γ232 = γ323 = 1/7. Note γiji ≡ (Ui|i − Uj|i)P (t = πk).

which we call, respectively, the “1-vs.-2” line, the “1-vs.-3” line, and the “2-vs.-3” line. Note that if any two
of these lines intersect, the third line must also share this intersection point. We also emphasize the simple
interpretation, from Eq. 4, of each of the γiji parameters appearing in these decision boundary line equations
as the difference in utilities between a “correct” and one particular “incorrect” decision (scaled by the a priori

probability of the true class in question); and of each difference in the γiji parameters as a difference in utilities
between two possible “incorrect” decisions (again scaled by the a priori probability of the true class in question).

An example ideal observer decision rule for particular values of the utilities Ui|j , and hence of the parameters
γiji, is shown in Fig. 1. Here we have chosen γ121 = γ212 = 3/14 and γ131 = γ313 = γ232 = γ323 = 1/7, yielding
the decision boundary lines

3

14
LR1 −

3

14
LR2 = 0 {“1-vs.-2”} (10)

1

7
LR1 −

1

14
LR2 =

1

7
{“1-vs.-3”} (11)

−
1

14
LR1 +

1

7
LR2 =

1

7
{“2-vs.-3”}. (12)

These simplify to the equations LR2 = LR1, LR2 = 2LR1 − 2, and LR2 = LR1/2 + 1, respectively.

3. THE SCURFIELD DECISION RULE

Scurfield investigated a decision rule applied to two-dimensional statistically variable data (~y ≡ (y1,y2)) drawn
from three classes.13 The application domain was human observer performance modeling for acoustical psy-
chophysics experiments. (In prior work, Scurfield investigated a decision rule for three-class classification of
univariate data.17 We will not review that prior work here, because at present we are interested in relating given
observer models to the three-class ideal observer model for multivariate observational data, which yield two-
dimensional decision variable data by Eq. 3.) In Scurfield’s work, no assumptions are made about the decision
variables y1 and y2; in particular, these decision variables are not assumed to be related in any way to an ideal
observer model. This is entirely appropriate given the nature of the problem domain Scurfield investigated —
i.e., human observer performance modeling. It can readily be shown, however, that if one chooses to make such
assumptions, special cases of the Scurfield model are in fact special cases of an ideal observer decision rule.
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Figure 2. Decision rule investigated by Scurfield, for the decision parameters γ1 and γ2.

The Scurfield decision rule is dependent on two decision parameters, which we will call γ1 and γ2. The
decision rule can be written as

decide d = π1 iff y1 − y2 ≥ γ1 − γ2 and y1 ≥ γ1; (13)

decide d = π2 iff y1 − y2 < γ1 − γ2 and y2 ≥ γ2; (14)

decide d = π3 iff y1 < γ1 and y2 < γ2. (15)

This decision rule is illustrated in Fig. 2.

From these relations, one can define the decision boundary lines

y1 − y2 = γ1 − γ2 {“1-vs.-2”} (16)

y1 = γ1 {“1-vs.-3”} (17)

y2 = γ2 {“2-vs.-3”}. (18)

Note the similarity in form between these equations and Eqs. 7-9. If we choose y1 ≡ LR1(~x) and y2 ≡ LR2(~x)
for some set of observational data ~x, we have a special case of Eqs. 7-9, which is illustrated in Fig. 3.

A second correspondence between Scurfield’s decision rule and the ideal observer decision rule can be obtained
by taking y1 ≡ log(LR1(~x)) and y2 ≡ log(LR2(~x)); note that a line of the form log(LR2) = log(LR1) + α
corresponds to a line of the form LR2 = βLR1 for appropriate constants α and β. By inspection, this is again a
special case of Eqs. 7-9, which is illustrated in Fig. 4.

Scurfield points out13 that the observer which maximizes PC , the “percent correct” or probability of a
correct response, is a special case of the ideal observer (i.e., a single operating point achievable by the ideal
observer for the given task). This observer follows the Scurfield decision rule model with y1 ≡ log(LR1(~x)) and
y2 ≡ log(LR2(~x)), and decision parameters given by eγ1 = P (π3)/P (π1) and eγ2 = P (π3)/P (π2). It is interesting
to note that the Scurfield decision rule model can in fact be used to describe ideal observer performance for an
even wider class of operating points, as shown in this section.

4. THE CHAN DECISION RULE

Chan et al. are investigating three-class classifiers for computer-aided diagnosis.14 Their work is motivated by
reasoning similar in principle to that which we independently arrived at when we began to consider this problem.
In particular, they consider a clinical situation in which observations must be classified as malignant, benign,
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≡ LR1(~x) and y

2
≡ LR2(~x).

PSfrag replacements

LR1

LR2

e
γ1

e
γ2

“π1”

“π2”

“π3”

Figure 4. A special case of the ideal observer decision rule which is a special case of the Scurfield decision rule with
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Figure 5. The decision rule investigated by Chan et al., which as they state is a special case of the ideal observer decision
rule. Observations in the unlabelled region are decided “not π3”, i.e., either “π1” or “π2”.

or normal. Because the goal of their work is to optimize the performance of a system to aid a radiologist or
clinician, rather than to measure the psychophysical performance of an existing observer, they choose to start
explicitly from an ideal observer model in constructing their decision rule.

In order to reduce the complexity of the ideal observer decision rule to manageable proportions, Chan et al.

impose restrictions on the utilities used by their observer. In their formulation, the class we are labelling π1 is
the benign class; π2, the normal class; and the malignant class is π3. They further assume that the possible
values of any utility Ui|j are restricted to the interval [0, 1]. They then set U1|1 = U2|2 = U3|3 = 1 (i.e., correctly
identifying any case has maximal utility). Furthermore, they require U2|1 = U1|2 = 1 and U1|3 = U2|3 = 0
(i.e., misidentifying a benign case as normal, or vice versa, has no significant cost reducing the utility of such a
decision from the maximum, but misclassifying an actually malignant case as benign or normal has the minimum
possible utility). Finally, U3|1, and U3|2 are assumed to have arbitrary values on the open interval (0, 1) (i.e.,
misclassifying an actually non-malignant case as malignant will have some cost reducing the utility of such
a decision from the maximum, but such a misclassification is in some sense “better” than missing an actual
malignancy). It is important to note that these assumptions are arguably relevant to a reasonable model of a
clinical situation, and are thus of interest beyond their superficial advantage in reducing the degrees of freedom
involved in the observer’s decision rule. We will, however, only consider the latter issue in the remainder of this
section.

Substituting the values of the utilities given above into Eq. 4, we obtain decision boundary lines of the form

0 LR1 + 0 LR2 = 0 {“1-vs.-2”} (19)

(1− U3|1)P (t = π1)

α
LR1 +

(1− U3|2)P (t = π2)

α
LR2 =

P (t = π3)

α
{“1-vs.-3”} (20)

(1− U3|1)P (t = π1)

α
LR1 +

(1− U3|2)P (t = π2)

α
LR2 =

P (t = π3)

α
{“2-vs.-3”} (21)

where α ≡ 1 + P (t = π3) − U3|1P (t = π1) − U3|2P (t = π2). Note that, as Chan et al. point out, the “1-vs.-2”
line is in fact undefined for this choice of utilities, while the “1-vs.-3” and “2-vs.-3” lines are identical. This is a
general consequence of Eqs. 7-9; if any two of these equations yield identical lines, the third line must be either
identical to them or undefined. The decision rule considered by Chan et al. is illustrated in Fig. 5.
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Figure 6. Decision rule investigated by Mossman, for the decision parameters α and β, shown in the a posteriori class
probability space.

5. THE MOSSMAN DECISION RULE

Mossman investigates a decision rule applied to a set of three decision variables y1, y2, and y3, subject to the
constraint

y1 + y2 + y3 = 1, (22)

as well as 0 ≤ yi ≤ 1 {1 ≤ i ≤ 3}. This is consistent with the constraint on the a posteriori class probabilities,
P (π1|~x) + P (π2|~x) + P (π3|~x) = 1; these quantities are known to be directly related to the likelihood ratio ideal
observer decision variables.18, 19 (In this section we will write P (πi|~x) instead of P (t = πi|~x) for simplicity.)
Mossman does not explicitly require, however, that the decision variables in Eq. 22 be the a posteriori class
probabilities (e.g., they may be noisy estimates of these quantities).

The decision rule considered by Mossman, which depends on two decision parameters α and β, is

decide d = π1 iff y2 − y1 ≤ β and y3 ≤ α; (23)

decide d = π2 iff y2 − y1 > β and y3 ≤ α; (24)

decide d = π3 iff y3 > α. (25)

where 0 ≤ α ≤ 1 and −1 ≤ β ≤ 1. From these relations, and given the relation y3 = 1 − y1 − y2 from Eq. 22,
one can define the decision boundary lines

y1 − y2 = −β {“1-vs.-2”} (26)

y1 + y2 = 1− α {“1-vs.-3”} (27)

y1 + y2 = 1− α {“2-vs.-3”}. (28)

This decision rule is illustrated in Fig. 6. Note that, similar to the Chan et al. decision rule, the “1-vs.-3” and
“2-vs.-3” decision boundary lines are identical.

We now consider a special case of the Mossman decision rule in which y1 = P (π1|~x), y2 = P (π2|~x), and
y3 = P (π3|~x) for some observational data vector ~x. This version of the decision rule is illustrated in Fig. 7.

Although the Mossman decision rule appears similar in form to the ideal observer decision rule, recall from
Sec. 4 that if two of the decision boundary line equations are identical, the third must yield a line identical to
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Figure 7. Decision rule investigated by Mossman, for the decision parameters α and β, shown in likelihood ratio space.

the first two or be undefined. Another way to see this is to note that the coefficients of Eq. 9 are differences of
the corresponding coefficients of Eqs. 7 and 8. If the coefficients of Eqs. 8 and 9 are identical, it must be the case
that the coefficients of Eq. 7 are all zero. For the Mossman decision rule, this would require 1+β = 0, 1−β = 0,
and β = 0 simultaneously, which is clearly impossible. It follows that the decision rule considered by Mossman
cannot represent possible ideal observer performance for any choice of the utilities Ui|j in Eqs. 1 and 2.

6. DISCUSSION AND CONCLUSIONS

We examined three decision rules proposed recently for three-class classification tasks by different researchers.
The basis for our evaluation was ideal observer decision theory, primarily because our own interest in the three-
class classification task is its possible application to CAD.

Although this is not the most general approach to three-class classification, the three-class classification task
is difficult enough that it is perhaps worth making any attempt to analyze, from a single point of view, the work
of the relatively few researchers investigating this problem.

In particular, Scurfield points out13 that his proposed decision rule is in fact an ideal observer decision rule
for a single ideal observer operating point, namely the observer which maximizes the probability of any correct
response (or “percent correct” or PC). We were able to show that, under various assumptions, a larger set of
such correspondences between the Scurfield observer and the ideal observer exists.

Chan et al. are working on the application of three-class classification to CAD, and thus explicitly take
the ideal observer as the starting point in the development of their decision rule.14 Although this rendered our
analysis of that decision rule in terms of ideal observer decision theory largely trivial, it provided an intuitive
basis for understanding the results of similar analysis of the Mossman decision rule, namely the conclusion that
the latter does not correspond to ideal observer behavior for any possible values of the utilities used by the ideal
observer. However, we note that the structure of the Mossman decision rule — a simple sequence of thresholds
on single decision variables — may indeed serve as a reasonable model for human observer performance in certain
situations, e.g., differential diagnosis.
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Abstract

We analyze recently proposed decision rules for three-class classification from the point of view of ideal observer decision theory. We

consider three-class decision rules proposed by Scurfield, by Chan et al., and by Mossman. Scurfield’s decision rule is shown to be a

special case of the three-class ideal observer decision rule in three different situations. Chan et al. start with an ideal observer model and

specify its decision-consequence utility structure in a way that causes two of the decision lines used by the ideal observer to overlap and

the third line to become undefined. Finally, we show that, for a particular and obvious choice of ideal-observer-related decision variables,

the Mossman decision rule cannot be a special case of the ideal observer decision rule. Despite the considerable difficulties presented by

the three-class classification task, the three-class ideal observer provides a useful framework for analyzing a variety of three-class decision

strategies.

r 2006 Elsevier Inc. All rights reserved.

Keywords: ROC analysis; Three-class classification; Ideal observer decision rules

1. Introduction

We are attempting to develop a fully automated mass
lesion classification scheme for computer-aided diagnosis
(CAD) in mammography. This scheme will combine two
schemes developed at the University of Chicago: one for
automatically detecting mass lesions in mammograms
(Bick et al., 1995; Kupinski, 2000; Yin et al., 1991, Yin,
Giger, Vyborny, Doi, & Schmidt, 1993, 1994), and one for
classifying known lesions as malignant or benign (Huo,
Giger, & Metz, 1999; Huo, Giger, & Vyborny, 2001; Huo,
Giger, Vyborny, & Metz, 2002; Huo, Giger, Vyborny,
Wolverton, & Metz, 2000; Huo et al., 1998). Combining
these two types of CAD scheme is inherently difficult,
because the output of the detection scheme will necessarily
include false-positive (FP) computer detections in addition
to the malignant and benign lesions to be classified. These

FP computer detections correspond to objects which
were by design not included in the training sample
of the classification scheme, because they are not members
of the data population (benign and malignant mass
breast lesions) for which the classification scheme was
created. It is clear then that the detection scheme’s output
cannot be used unmodified as the input to the classification
scheme.
Our approach has been to treat this problem explicitly as

a three-class classification task. That is, the outputs of the
detection scheme should be classified as malignant lesions,
benign lesions, and non-lesions (FP computer detections),
and the classifier to be estimated is the ideal observer
decision rule for this task. Such an approach presents
considerable difficulties of its own. On the one hand,
decision rules, in particular ideal observer decision rules,
increase rapidly in complexity with the number of classes
involved. On the other hand, a fully general performance
evaluation method, such as a three-class extension of
receiver operating characteristic (ROC) analysis, has yet to
be developed. It should be mentioned that the simple model
we have just described corresponds in the two-class
classification task to ROC analysis performed ‘‘per
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detection;’’ that is, each ‘‘case’’ being classified corresponds
to a small region of interest (ROI) in the image containing
a single computer detection. Other formulations, such as
ROC analysis ‘‘per image,’’ ROC analysis ‘‘per patient’’
(for a set of images, such as the four mammographic views
obtained in a typical screening setting), or free-response
ROC (FROC) (Bunch, Hamilton, Sanderson, & Simmons,
1978; Chakraborty, 1989, 2002) analysis, are also possible,
but their extension to tasks with three or more classes is
beyond the scope of the present work.

The explicit form of the decision rule used by the ideal
observer in a three-class classification task has been known
for some time (Van Trees, 1968). For the reasons just
stated, however, a practical and general method for
estimating and evaluating observer performance has
proven elusive. In particular, Scurfield (1996) defined the
two-class information-based performance metric D1:2 �

log 2�AUC log AUC� ð1�AUCÞ logð1�AUCÞ (where
AUC is the area under the two-class ROC curve), and
extended it to the three-class case for two different decision
rules (Scurfield, 1996, 1998). Srinivasan (1999) investigated
the optimality of discrete, multi-class ROC operating
points, but not continuous ROC hypersurfaces, under a
cost function equivalent to the Bayes risk. Mossman (1999)
evaluated the performance of a three-class classifier with a
surface formed from the three correct classification
probabilities. Hand and Till (2001) proposed the average
of the areas under all NðN � 1Þ=2 between-class ROC
curves as a performance metric in an N-class classification
task. Obuchowski et al. (2001) elicited readers’ estimates of
the set of probabilities of each observation belonging to N

classes, and then used conventional (two-class) ROC
analysis to evaluate each of the NðN � 1Þ=2 differences of
these estimates for its ability to distinguish between the
relevant pair of classes. Ferri, Hernández-Orallo, and
Salido (2003) proposed a variety of algorithms for
calculating the hypervolume under the convex hull
obtained from a set of discrete ROC operating points; a
modified version of the Hand and Till metric averaging the
N areas under the ROC surfaces that measure the
observer’s ability to distinguish a given class from the
remaining N � 1; and a graphical ‘‘cobweb’’ representation
of the observer’s misclassification probabilities. Lachiche
and Flach (2003) proposed iterative algorithms for finding
the optimal among a discrete set of multi-class ROC
operating points based on either percent correct or Bayes
risk. Nakas and Yiannoutsos (2004) considered an
observer using a decision rule similar to that of Scurfield
(1996), and evaluated its performance statistically by
extending methods proposed by Dreiseitl, Ohno-Machado,
and Binder (2000). Patel and Markey (2005) applied a
variety of proposed evaluation metrics, including the Hand
and Till metric, the modified Hand and Till metric of
Ferri, the ‘‘cobweb’’ graphical measure of Ferri, and the
Mossman ROC surface, to radiologist assessment data of
mammographic images from patients who subsequently
underwent biopsy.

The works cited above demonstrate the difficulty in
developing a fully general performance metric for classifi-
cation tasks with more than two classes. Lacking such a
performance metric in turn makes the development of
observer decision rules for such tasks difficult, because they
can at present be evaluated and compared only from a
theoretical rather than an empirical perspective. Never-
theless, observer decision rule models for three-class
classification tasks have been proposed relatively recently
by several groups of researchers. In some cases, these
models are motivated more by considerations of tract-
ability than of complete generality. This is of course
understandable given the inherent difficulties of three-class
classification; however, we thought it might be of interest
to analyze a number of recently proposed three-class
decision rule models within an ideal observer decision rule
framework.
In the next section, we review the three-class ideal

observer decision rule. In the following three sections, we
review recently proposed three-class decision rule models:
one by Scurfield (1998), one by Chan, Sahiner, Hadjiiski,
Petrick, and Zhou (2003), and one by Mossman (1999). In
each case, the given decision rule is analyzed in terms of the
ideal observer decision rule; where necessary or expedient,
assumptions are made about the observer’s decision
variables in order to facilitate this analysis. We emphasize
that we do not attempt a review of the experimental
methods or detailed analysis of proposed performance
evaluation metrics in the works discussed; we are here
interested only in the form of the decision rule which serves
as the starting point for each work, and superficially in the
proposed evaluation metrics inasmuch as they are related
to those decision rules. (Because of the lack of a fully
general performance metric, or figure of merit, for the
three-class classification task and, in particular, apparent
inconsistencies which are obtained from a straightforward
generalization of the area under the ROC curve (Edwards,
Metz, & Nishikawa, 2005) we do not attempt any
validation or quantitative comparison of the proposed
performance metrics.) The results of our analyses are
briefly summarized in Section 6.

2. The three-class ideal observer

It can be shown (Edwards, Metz, & Kupinski, 2004b;
Van Trees, 1968) that an N-class ideal observer makes
decisions regarding statistically variable observations ~x by
partitioning a likelihood ratio decision variable space,
where the boundaries of the partitions are given by
hyperplanes

decide d ¼ pi iff

XN�1

k¼1

ðUijk �UjjkÞPðt ¼ pkÞLRk

XðUjjN �UijN ÞPðt ¼ pN Þ fjoig ð1Þ
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and

XN�1

k¼1

ðUijk �UjjkÞPðt ¼ pkÞLRk

4ðUjjN �UijN ÞPðt ¼ pN Þ fj4ig. ð2Þ

Here Uijj is the utility of deciding an observation is from
class pi given that it is actually from class pj , and the N � 1
likelihood ratios are defined as

LRk �
p~xð~xjt ¼ pkÞ

p~xð~xjt ¼ pN Þ
(3)

for koN. We also define the actual class (the ‘‘truth’’) to
which an observation belongs as t, and the class to which it
is assigned (the ‘‘decision’’) as d, where t and d can take on
any of the values p1; . . . ; pi; . . . ;pN , the labels of the various
classes. (We use boldface type to denote statistically
variable quantities.) For simplicity, we will usually write
pk to denote the event t ¼ pk, as in the a priori probability
PðpkÞ.

The partitioning of the decision variable space is
determined by the parameters

gijk � ðUijk �UjjkÞPðpkÞ, (4)

with i, j, and k varying from 1 to N, and jai. Note that
these parameters are not independent, however, because

gijk ¼ gkjk � gkik. (5)

We can impose the reasonable condition that the utility
for correctly classifying an observation from a given class
should be greater than any utility for incorrectly classifying
an observation from the same class, i.e., Uiji4Ujji fiajg.
This gives, for jai,

giji40, (6)

leaving NðN � 1Þ parameters (the rest are derivable
from (5)).

Finally, note that the hyperplanes represented by (1) and
(2) are unchanged if we multiply all of these relations by a
single scalar, such as 1=ð

P
iaj gijiÞ. This leaves us with N2 �

N � 1 degrees of freedom, as expected, and effectively
imposes the condition
X

iaj

giji ¼ 1. (7)

The behavior of a three-class ideal observer is completely
determined by the three decision boundary lines

g121LR1 � g212LR2 ¼ g313 � g323, (8)

g131LR1 þ ðg232 � g212ÞLR2 ¼ g313, (9)

ðg131 � g121ÞLR1 þ g232LR2 ¼ g323, (10)

which we call, respectively, the ‘‘1-vs.-2’’ line, the ‘‘1-vs.-3’’
line, and the ‘‘2-vs.-3’’ line. Note that if any two of these
lines intersect, the third line must also share this intersec-
tion point. We also emphasize the simple interpretation,
from (4), of each of the giji parameters appearing in these

decision boundary line equations as the difference in
utilities between a ‘‘correct’’ and one particular ‘‘incorrect’’
decision (scaled by the a priori probability of the true class
in question); and of each difference in the giji parameters as
a difference in utilities between two possible ‘‘incorrect’’
decisions (again scaled by the a priori probability of the
true class in question).
An example ideal observer decision rule for particular

values of the utilities Uijj , and hence of the parameters giji,
is shown in Fig. 1. Here we have chosen g121 ¼ g212 ¼

3
14

and g131 ¼ g313 ¼ g232 ¼ g323 ¼
1
7
, yielding the decision

boundary lines

3
14
LR1 �

3
14
LR2 ¼ 0 f ‘‘ 1-vs.-2’’ g , (11)

1
7
LR1 �

1
14
LR2 ¼

1
7
f ‘‘ 1-vs.-3’’ g , (12)

� 1
14
LR1 þ

1
7
LR2 ¼

1
7
f ‘‘ 2-vs.-3’’ g . (13)

These simplify to the equations LR2 ¼ LR1,
LR2 ¼ 2LR1 � 2, and LR2 ¼ LR1=2þ 1, respectively.

3. The Scurfield decision rule

Scurfield investigated a decision rule applied to two-
dimensional statistically variable data ð~y � ðy1; y2ÞÞ drawn
from three classes (Scurfield, 1998). The application
domain was human observer performance modeling for
acoustical psychophysics experiments. (In prior work,
Scurfield investigated a decision rule for three-class
classification of univariate data (Scurfield, 1996). We will
not review that prior work here, because at present we are
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Fig. 1. Example three-class ideal observer decision rule, given the values

of the decision parameters g121 ¼ g212 ¼
3
14

and

g131 ¼ g313 ¼ g232 ¼ g323 ¼
1
7
. Note that giji � ðUiji �UjjiÞPðt ¼ piÞ.
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interested in relating given observer models to the general
three-class ideal observer model for multivariate observa-
tional data, which—except in degenerate cases—will yield
two-dimensional decision variable data by (3).) In
Scurfield’s work, no assumptions are made about the
decision variables y1 and y2; in particular, these decision
variables are not assumed to be related in any way to an
ideal observer model. This is entirely appropriate given the
nature of the problem domain Scurfield investigated—i.e.,
human observer performance modeling. It can readily be
shown, however, that if one chooses to make such
assumptions, special cases of the Scurfield model are in
fact special cases of an ideal observer decision rule.

The Scurfield decision rule is dependent on two decision
parameters, which we will call g1 and g2. The decision rule
can be written as

decide d ¼ p1 iff y1 � y2Xg1 � g2 and y1Xg1, (14)

decide d ¼ p2 iff y1 � y2og1 � g2 and y2Xg2, (15)

decide d ¼ p3 iff y1og1 and y2og2. (16)

This decision rule is illustrated in Fig. 2.
From these relations, one can define the decision

boundary lines

y1 � y2 ¼ g1 � g2 f ‘‘ 1-vs.-2’’ g , (17)

y1 ¼ g1 f ‘‘ 1-vs.-3’’ g , (18)

y2 ¼ g2 f ‘‘ 2-vs.-3’’ g . (19)

If we choose y1 � LR1ð~xÞ and y2 � LR2ð~xÞ for some set of
observational data ~x, we have

1

g0
LR1 �

1

g0
LR2 ¼

g1 � g2
g0

f ‘‘ 1-vs.-2’’ g , (20)

1

g0
LR1 ¼

g1
g0
f ‘‘ 1-vs.-3’’ g , (21)

1

g0
LR2 ¼

g2
g0
f ‘‘ 2-vs.-3’’ g , (22)

where g0 � g1 þ g2 þ 4 (to impose consistency with (7)).
Note the similarity in form between these equations and
(8)–(10). If we require g1 and g2 to be positive, the
correspondence is exact, and this special case of (8)–(10) is
illustrated in Fig. 3. (In fact, the intersection of the ideal
observer decision boundary lines can lie in any quadrant.
However, given a set of decision boundary lines with slopes
as depicted in Fig. 2, the occurrence of the intersection
point in any quadrant other than the first would result in
an ideal observer operating point for which no observa-
tions were assigned to class p3. This ‘‘degenerate’’ case will
not be considered here.) As an aside, it is of some interest
to note that if g1 ¼ g2 ¼ 1, the decision boundary line
equations reduce to LR1 ¼ LR2, yielding pð~xjp1Þ ¼ pð~xjp2Þ;
LR1 ¼ 1, yielding pð~xjp1Þ ¼ pð~xjp3Þ; and LR2 ¼ 1, yielding
pð~xjp2Þ ¼ pð~xjp3Þ. That is, the decision boundary lines
correspond, in the observational data space, to the loci of
intersection of the observational data probability density
functions. (This is illustrated in Figs. 2B and 2C of
Scurfield (1998).)
A second correspondence between Scurfield’s decision

rule and the ideal observer decision rule can be obtained by
taking y1 � logðLR1ð~xÞÞ and y2 � logðLR2ð~xÞÞ, with g1 and
g2 now unrestricted. Substituting this definition in
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Fig. 2. Decision rule investigated by Scurfield, for the decision parameters

g1 and g2.
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Fig. 3. A special case of the ideal observer decision rule with

g121 ¼ g212 ¼ g131 ¼ g232 ¼ 1=ðg1 þ g2 þ 4Þ, g313 ¼ g1=ðg1 þ g2 þ 4Þ, and

g323 ¼ g2=ðg1 þ g2 þ 4Þ. The parameters g1 and g2 are positive but

otherwise arbitrary; this decision rule is a special case of the Scurfield

decision rule with y1 � LR1ð~xÞ and y2 � LR2ð~xÞ.
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(17)–(19), we obtain

logðLR1Þ � logðLR2Þ ¼ g1 � g2 f ‘‘ 1-vs.-2’’ g , (23)

logðLR1Þ ¼ g1 f ‘‘ 1-vs.-3’’ g , (24)

logðLR2Þ ¼ g2 f ‘‘ 2-vs.-3’’ g . (25)

Taking exponentials on each side of these equations then
gives

LR1

LR2
¼ eg1�g2 f ‘‘ 1-vs.-2’’ g , (26)

LR1 ¼ eg1 f ‘‘ 1-vs.-3’’ g , (27)

LR2 ¼ eg2 f ‘‘ 2-vs.-3’’ g , (28)

we can then rearrange terms and divide the equations by a
constant factor to obtain

e�g1

g0
LR1 �

e�g2

g0
LR2 ¼ 0 f ‘‘ 1-vs.-2’’ g , (29)

e�g1

g0
LR1 ¼

1

g0
f ‘‘ 1-vs.-3’’ g , (30)

e�g2

g0
LR2 ¼

1

g0
f ‘‘ 2-vs.-3’’ g , (31)

where g0 � 2ðe�g1 þ e�g2 þ 1Þ. By inspection, this is again a
special case of (8)–(10), which is illustrated in Fig. 4. (This
special case is currently the subject of independent analysis
by He, Metz, Tsui, Links, & Frey, 2006.) As an aside, we
note that if g1 ¼ g2 ¼ 0, the resulting decision boundary
lines again correspond, in the observational data space, to
the loci of intersection of the observational data prob-
ability density functions, as was pointed out in the text
following (20)–(22).

Finally, if we take y1 � Pðp1j~xÞ and y2 � Pðp2j~xÞ, and
require 0og1o1 and 0og2o1, we obtain

Pðp1j~xÞ � Pðp2j~xÞ ¼ g1 � g2 f ‘‘ 1-vs.-2’’ g , (32)

Pðp1j~xÞ ¼ g1 f ‘‘ 1-vs.-3’’ g , (33)

Pðp2j~xÞ ¼ g2 f ‘‘ 2-vs.-3’’ g , (34)

as illustrated in Fig. 5.
Note that (3) can be written as

LRi ¼
Pðpij~xÞpð~xÞ=PðpiÞ

pð~xjp3Þ
fi : 1pip2g,

Pðpij~xÞ ¼
LRiPðpiÞ

pð~xÞ=pð~xjp3Þ
,

Pðpij~xÞ ¼
LRi½PðpiÞ=Pðp3Þ�

1þ LR1½Pðp1Þ=Pðp3Þ� þ LR2½Pðp2Þ=Pðp3Þ�
.

(35)

This allows us to rewrite (32)–(34) as

1� ðg1 � g2Þ
g0

Pðp1Þ
Pðp3Þ

LR1 �
1þ ðg1 � g2Þ

g0

Pðp2Þ
Pðp3Þ

LR2

¼
g1 � g2

g0
, ð36Þ
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Fig. 4. A special case of the ideal observer decision rule with

g121 ¼ g131 ¼ e�g1=g0, g212 ¼ g232 ¼ e�g1=g0, g313 ¼ g323 ¼ 1=g0, and

g0 � 2ðe�g1 þ e�g2 þ 1Þ. The parameters g1 and g2 are arbitrary; this

decision rule is a special case of the Scurfield decision rule with y1 �

logðLR1ð~xÞÞ and y2 � logðLR2ð~xÞÞ.
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“π3” “π1”

→

→

Fig. 5. A special case of the Scurfield decision rule with y1 � Pðp1j~xÞ and
y2 � Pðp2j~xÞ.
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1� g1
g0

Pðp1Þ
Pðp3Þ

LR1 �
g1
g0

Pðp2Þ
Pðp3Þ

LR2 ¼
g1
g0

, (37)

�
g2
g0

Pðp1Þ
Pðp3Þ

LR1 þ
1� g2
g0

Pðp2Þ
Pðp3Þ

LR2 ¼
g2
g0

, (38)

respectively, where g0 � ð2� 2g1 þ g2ÞPðp1Þ=Pðp3Þþ
ð2þ g1 � 2g2ÞPðp2Þ=Pðp3Þ þ g1 þ g2. This is again a special
case of (8)–(10), as the quantities 1� ðg1 � g2Þ,
1þ ðg1 � g2Þ, 1� g1, and 1� g2 are all positive given
0og1o1 and 0og2o1.

Scurfield (1998) points out that the observer which
maximizes PC , the ‘‘percent correct’’ or probability of a
correct response, is a special case of the ideal observer (i.e.,
a single operating point achievable by the ideal observer for
the given task). This observer follows the Scurfield decision
rule model with y1 � logðLR1ð~xÞÞ and y2 � logðLR2ð~xÞÞ,
and decision parameters given by eg1 ¼ Pðp3Þ=Pðp1Þ and
eg2 ¼ Pðp3Þ=Pðp2Þ. It is interesting to note that the Scurfield
decision rule model can in fact be used to describe ideal
observer performance for an even wider class of operating
points, as shown in this section.

To evaluate the performance of an observer using the
decision rule in (17)–(19), Scurfield plots a set of
six surfaces in three-dimensional ROC spaces, giving
Pðd ¼ p2jt ¼ aðp2ÞÞ as a function of Pðd ¼ p1jt ¼ aðp1ÞÞ
and Pðd ¼ p3jt ¼ aðp3ÞÞ. Here a is one of the six possible
permutations of three symbols. Scurfield gives a probabil-
istic interpretation for this evaluation methodology: the
volume under each surface is the probability of a particular
outcome in a three-alternative forced choice experiment,
and thus the six volumes must sum to one. This constraint
means that at most five of the surfaces are independent.
However, given the number of conditional probabilities
Pðd ¼ pijt ¼ pjÞ involved, one can show that only four such
surfaces are required to completely specify the tradeoffs
among the observer’s conditional classification probabil-
ities. Without loss of generality, we consider plotting each
of Pðd ¼ p2jt ¼ p1Þ, Pðd ¼ p2jt ¼ p3Þ, Pðd ¼ p3jt ¼ p1Þ,
and Pðd ¼ p3jt ¼ p2Þ as functions of Pðd ¼ p1jt ¼ p2Þ and
Pðd ¼ p1jt ¼ p3Þ. (As with Scurfield’s plots, these are well
defined because Scurfield’s decision rule has two degrees of
freedom, namely the parameters g1 and g2).

Now consider one of Scurfield’s plots, for example that
which gives Pðd ¼ p2jt ¼ p2Þ as a function of Pðd ¼ p1jt ¼
p1Þ and Pðd ¼ p3jt ¼ p3Þ. Because these are conditional
probabilities, we have

Pðd ¼ p1jt ¼ p1Þ ¼ 1� Pðd ¼ p2jt ¼ p1Þ

� Pðd ¼ p3jt ¼ p1Þ, ð39Þ

Pðd ¼ p2jt ¼ p2Þ ¼ 1� Pðd ¼ p1jt ¼ p2Þ

� Pðd ¼ p3jt ¼ p2Þ, ð40Þ

Pðd ¼ p3jt ¼ p3Þ ¼ 1� Pðd ¼ p1jt ¼ p3Þ

� Pðd ¼ p2jt ¼ p3Þ. ð41Þ

Each of the conditional probabilities on the right-hand
side of these equations can be written as functions of
Pðd ¼ p1jt ¼ p2Þ and Pðd ¼ p1jt ¼ p3Þ in our formulation;
thus, the surface given in this plot is determined
parametrically by the set of four surfaces we have given.
Similar remarks hold for the other five surfaces used by
Scurfield. In general, for an N-class classification task using
a Scurfield-type decision rule with N � 1 degrees of
freedom (the generalization to N classes of (17)–(19)),
one can show that a set of ðN � 1Þ2 hypersurfaces with
N � 1 degrees of freedom in N-dimensional ROC spaces is
necessary to fully characterize the observer’s performance,
although the interpretation of those hypersurfaces is not
necessarily as straightforward or elegant as that provided
for the N!� 1 hypersurfaces used by Scurfield.

4. The Chan decision rule

Chan et al. are investigating three-class classifiers for
computer-aided diagnosis (Chan et al., 2003). Their work is
motivated by reasoning similar in principle to that which
we independently arrived at when we began to consider this
problem. In particular, they consider a clinical situation in
which observations must be classified as malignant, benign,
or normal. The goal of their work is not just the
psychophysical measurement of the performance of an
existing (e.g., human) observer, but the optimization of the
performance of a system (containing components with
parameters subject to experimental control, e.g. an artificial
neural network) to aid a radiologist or clinician. Thus they
are free, at least in theory, to start explicitly from an ideal
observer model in constructing their decision rule.
In order to reduce the complexity of the ideal observer

decision rule to manageable proportions, Chan et al.
impose restrictions on the utilities used by their observer.
In their formulation, the class we are labeling p1 is the
benign class; p2, the normal class; and the malignant class
is p3. They further assume that the possible values of any
utility Uijj are restricted to the interval ½0; 1�. They then
set U1j1 ¼ U2j2 ¼ U3j3 ¼ 1 (i.e., correctly identifying any
case has maximal utility). Furthermore, they require
U2j1 ¼ U1j2 ¼ 1 and U1j3 ¼ U2j3 ¼ 0 (i.e., misidentifying
a benign case as normal, or vice versa, has no significant
cost reducing the utility of such a decision from the
maximum, but misclassifying an actually malignant case as
benign or normal has the minimum possible utility).
Finally, U3j1 and U3j2 are assumed to have arbitrary
values on the open interval ð0; 1Þ (i.e., misclassifying an
actually non-malignant case as malignant will have some
cost reducing the utility of such a decision from the
maximum, but such a misclassification is in some sense
‘‘better’’ than missing an actual malignancy). It is
important to note that these assumptions are arguably
relevant to a reasonable model of a clinical situation, and
are thus of interest beyond their superficial advantage in
reducing the degrees of freedom involved in the observer’s
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decision rule. We will, however, only consider the latter
issue in the remainder of this section.

Substituting the values of the utilities given above into
(4), we obtain decision boundary lines of the form

0LR1 þ 0LR2 ¼ 0 f ‘‘ 1-vs.-2’’ g , (42)

ð1�U3j1ÞPðp1Þ
g0

LR1 þ
ð1�U3j2ÞPðp2Þ

g0
LR2

¼
Pðp3Þ
g0

f ‘‘ 1-vs.-3’’ g , ð43Þ

ð1�U3j1ÞPðp1Þ
g0

LR1 þ
ð1�U3j2ÞPðp2Þ

g0
LR2

¼
Pðp3Þ
g0

f ‘‘ 2-vs.-3’’ g , ð44Þ

where g0 � 1þ Pðp3Þ �U3j1Pðp1Þ �U3j2Pðp2Þ. Note that,
as Chan et al. point out, the ‘‘1-vs.-2’’ line is in fact
undefined for this choice of utilities, while the ‘‘1-vs.-3’’ and
‘‘2-vs.-3’’ lines are identical. This is a general consequence
of (8)–(10); if any two of these equations yield identical
lines, the third line must be undefined. (Note that, strictly
speaking, the utility structure employed by Chan et al. is
excluded from our formulation by the requirement stated
in (6). However, this issue—i.e., whether the ideal
observer’s performance should be considered to include
such limiting cases—is largely a definitional, rather than a
fundamental, issue, because (6) could just as readily have
been formulated as a non-negativity constraint, rather than
a strict inequality as we have chosen).

The decision rule considered by Chan et al. is illustrated
in Fig. 6. It can be argued that, in a sense, the output of this
classifier belongs to only two classes, malignant and non-
malignant; in particular, because (42) is undefined, this
observer will never unequivocally decide d ¼ p1 (benign) or
p2 (normal). In fact, if U3j1 ¼ U3j2, the observer’s
performance is identical with that of a two-class ideal
observer which distinguishes between the malignant and
non-malignant (benign plus normal) classes. However, in
the more general case in which U3j1aU3j2, the observer
considered by Chan et al. is able to achieve ROC operating
points not accessible by the two-class ideal observer. (That
is, the three-class ideal observer can achieve points below
the two-class ideal observer’s ROC curve in a two-class
ROC space, or, equivalently, points off the curve
representing the two-class ideal observer’s performance
plotted in a three-class ROC space.) Intuitively, their
observer makes decisions based on the three distribution
functions of the observational data, even though the
observer’s output consists of only two possible responses.

Chan et al. evaluate the performance of their observer by
plotting Pðd ¼ p3jt ¼ p3Þ as a function of Pðd ¼ p3jt ¼ p1Þ
and Pðd ¼ p3jt ¼ p2Þ. Note that this single two-dimen-
sional surface is sufficient to completely characterize the
tradeoffs among the conditional classification probabilities
of their observer. This is because, as just stated, the
observer’s output consists of only two possible responses,

and thus we have only six classification probabilities
Pðd ¼ pijt ¼ pjÞ rather than the nine expected in a three-
class classification task. These six conditional probabilities
are still constrained by three equations, however:

Pðd ¼ ~p3jt ¼ p1Þ þ Pðd ¼ p3jt ¼ p1Þ ¼ 1, (45)

Pðd ¼ ~p3jt ¼ p2Þ þ Pðd ¼ p3jt ¼ p2Þ ¼ 1, (46)

Pðd ¼ ~p3jt ¼ p3Þ þ Pðd ¼ p3jt ¼ p3Þ ¼ 1, (47)

where the expression d ¼ ~p3 indicates that the observer
decides that the observation does not belong to class p3.
These constraint equations allow us to eliminate three of
the six conditional probabilities, leaving a single ROC
surface with two degrees of freedom in a three-dimensional
ROC space.

5. The Mossman decision rule

Mossman (1999) investigates a decision rule applied to a
set of three decision variables y1, y2, and y3, subject to the
constraint

y1 þ y2 þ y3 ¼ 1, (48)

as well as 0pyip1 f1pip3g. This is consistent with the
constraint on the a posteriori class probabilities,
Pðp1j~xÞ þ Pðp2j~xÞ þ Pðp3j~xÞ ¼ 1; these quantities are
known to be directly related to the likelihood ratio ideal
observer decision variables (Edwards, Lan, Metz, Giger, &
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γ1

γ2

“π3”

LR2

LR1

Fig. 6. The decision rule investigated by Chan et al., which is a special

case of the ideal observer decision rule with g121 ¼ g212 ¼ 0,

g131 ¼ ð1�U3j1ÞPðp1Þ=g0, g232 ¼ ð1�U3j2ÞPðp2Þ=g0, and g313 ¼ g323 ¼
Pðp3Þ=g0; here g0 � 1þ Pðp3Þ �U3j1Pðp1Þ �U3j2Pðp2Þ. Observations in

the unlabeled region are decided ‘‘not p3’’, i.e., either ‘‘p1’’ or ‘‘p2’’.
The intercepts g1 and g2 are Pðp3Þ=½ð1�U3j1ÞPðp1Þ� and Pðp3Þ=
½ð1�U3j2ÞPðp2Þ�, respectively.
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Nishikawa, 2004a; Kupinski, Edwards, Giger, & Metz,
2001). Mossman does not explicitly require, however, that
the decision variables in (48) be the a posteriori class
probabilities (e.g., they may be noisy estimates of these
quantities).

The decision rule considered by Mossman, which
depends on two decision parameters g1 and g2, is

decide d ¼ p1 iff y2 � y1pg2 and y3pg1, (49)

decide d ¼ p2 iff y2 � y14g2 and y3pg1, (50)

decide d ¼ p3 iff y34g1. (51)

where 0pg1p1 and �1pg2p1. From these relations, and
given the relation y3 ¼ 1� y1 � y2 from (48), one can
define the decision boundary lines

y1 � y2 ¼ �g2 f ‘‘ 1-vs.-2’’ g , (52)

y1 þ y2 ¼ 1� g1 f ‘‘ 1-vs.-3’’ g , (53)

y1 þ y2 ¼ 1� g1 f ‘‘ 2-vs.-3’’ g . (54)

This decision rule is illustrated in Fig. 7. Note that, similar
to the Chan et al. decision rule, the ‘‘1-vs.-3’’ and ‘‘2-vs.-3’’
decision boundary lines are identical.

We now consider a special case of the Mossman decision
rule in which y1 ¼ Pðp1j~xÞ, y2 ¼ Pðp2j~xÞ, and y3 ¼ Pðp3j~xÞ
for some observational data vector ~x. As in Section 3, we
make the substitution in (35); this allows us to rewrite

(52)–(54) as

ð1þ g2Þ
Pðp1Þ
Pðp3Þ

LR1 � ð1� g2Þ
Pðp2Þ
Pðp3Þ

LR2

¼ �g2 f ‘‘ 1-vs.-2’’ g , ð55Þ

g1
Pðp1Þ
Pðp3Þ

LR1 þ g1
Pðp2Þ
Pðp3Þ

LR2 ¼ 1� g1 f ‘‘ 1-vs.-3’’ g ,

(56)

g1
Pðp1Þ
Pðp3Þ

LR1 þ g1
Pðp2Þ
Pðp3Þ

LR2 ¼ 1� g1 f ‘‘ 2-vs.-3’’ g ,

(57)

This version of the decision rule is illustrated in Fig. 8.
Although the Mossman decision rule for this choice of

decision variables appears similar in form to the ideal
observer decision rule, recall from Section 4 that if two of
the decision boundary line equations are identical, the third
must yield a line identical to the first two or be undefined.
Another way to see this is to note that the coefficients of
(10) are differences of the corresponding coefficients of (8)
and (9). If the coefficients of (9) and (10) are identical, it
must be the case that the coefficients of (8) are all zero. For
the Mossman decision rule, this would require 1þ g2 ¼ 0,
1� g2 ¼ 0, and g2 ¼ 0 simultaneously, which is clearly
impossible.
It follows that, for this particular choice of decision

variables (related in a straightforward way to the ideal
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Fig. 7. Decision rule investigated by Mossman, for the decision

parameters g1 and g2, shown in the a posteriori class probability space.
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Fig. 8. Decision rule investigated by Mossman, for the decision

parameters g1 and g2, shown in likelihood ratio space.
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observer’s decision variables), the decision rule considered
by Mossman cannot represent possible ideal observer
performance for any choice of the utilities Uijj in (1) and
(2). (One can construct probability density functions such
that the Mossman observer’s behavior for a particular
choice of decision criteria (g1 and g2 in (49)–(51))
corresponds to ideal observer behavior at a particular
operating point. However, we do not at present have any
reason to believe that this result can be generalized to
arbitrary probability density functions or to arbitrary
choices of decision criteria for a given choice of probability
density functions).

Mossman proposed that the ROC surface obtained by
plotting Pðd ¼ p3jt ¼ p3Þ as a function of Pðd ¼ p1jt ¼ p1Þ
and Pðd ¼ p2jt ¼ p2Þ be used to evaluate the performance
of the observer. Although this surface is clearly well-
defined (the Mossman decision rule has two degrees of
freedom, namely the parameters g1 and g2), it follows from
the discussion at the end of Section 3 that four such
surfaces in three-dimensional ROC spaces are needed to
completely characterize the tradeoffs among the observer’s
conditional classification probabilities.

6. Discussion and conclusions

We examined three decision rules proposed recently for
three-class classification tasks by different researchers. The
basis for our evaluation was ideal observer decision theory,
primarily because our own interest in the three-class
classification task is its possible application to CAD. A
major goal in the development of a computerized scheme
for CAD is the optimization of the performance of that
scheme, in order to provide the maximum benefit to
clinicians and thus to their patients. It should thus be kept
clearly in mind that the ideal observer framework may not
be as relevant, for example, to work which is motivated by
purely psychophysical considerations (Mossman, 1999;
Scurfield, 1996, 1998)—i.e., where the goal is to estimate
of the properties of an existing observer.

That being said, the three-class classification task is
difficult enough that it is perhaps worth making any
attempt to analyze, from a single point of view, the work of
the relatively few researchers investigating this problem,
even in cases where that point of view is not necessarily
relevant to the underlying motivations for that work. We
feel the insights we have gained from the analysis of
various decision rules presented here should provide at
least some justification for that claim.

In particular, Scurfield points out (Scurfield, 1998) that
his proposed decision rule is in fact an ideal observer
decision rule for a single ideal observer operating point,
namely the observer which maximizes the probability of
any correct response (or ‘‘percent correct’’ or PC). We were
able to show that, under various assumptions, a larger set
of such correspondences between the Scurfield observer
and the ideal observer exists.

Chan et al. (2003) are working on the application of
three-class classification to CAD, and thus explicitly take
the ideal observer as the starting point in the development
of their decision rule. Although this rendered our analysis
of that decision rule in terms of ideal observer decision
theory largely trivial, their decision rule merits attention as
an example of a situation in which the ideal observer is
indeed making use of information from the three classes of
observations (i.e., its behavior is demonstrably different
from that of a two-class ideal observer), while only
producing two different responses for those observations.
In two-class classification, the only corresponding exam-
ples are trivial: either the observer always calls observa-
tions positive (achieving an operating point of
ðFPF ¼ 1;TPF ¼ 1Þ, where FPF is the false-positive
fraction and TPF the true-positive fraction) or always calls
them negative ðFPF ¼ 0;TPF ¼ 0Þ.
Finally, we showed that, given a particular and obvious

choice of ideal-observer-related decision variables, the
decision rule proposed by Mossman (1999) does not
correspond to ideal observer behavior for any possible
values of the observer’s utilities. However, we note that the
structure of the Mossman decision rule—a simple sequence
of thresholds on single decision variables—may indeed
serve as a reasonable model for human observer perfor-
mance in certain situations, e.g., differential diagnosis.
That such a decision rule fails to be an ideal observer
decision rule may be considered surprising, given the
properties the Mossman decision rule shares with that of
Chan et al.—in particular, the identity of two out of the
three decision boundary lines. The reasons why one
decision rule can be said to correspond to ideal observer
behavior, while a rule similar in structure does not when
used with a particular and obvious choice of decision
variables, are connected to fundamental constraints on the
ideal observer’s behavior; given the inherent complexities
of the three-class classification task, it is easy for such
subtleties to be overwhelmed by other details. A close
comparison of two possible three-class classification
decision rules can thus provide an immediate and intuitive
understanding of such properties, even though a complete
and fully general solution to the three-class classification
problem remains elusive.

Acknowledgments

The authors thank Vit Drga for bringing Brian Scurfield’s
work to their attention, and thank both Vit Drga and Brian
Scurfield for helpful conversations concerning that work.
The authors thank Heang-Ping Chan and Berkman Sahiner
for helpful conversations concerning their work.

References

Bick, U., Giger, M. L., Schmidt, R. A., Nishikawa, R. M., Wolverton, D.

E., & Doi, K. (1995). Automated segmentation of digitized mammo-

grams. Academic Radiology, 2, 1–9.

ARTICLE IN PRESS
D.C. Edwards, C.E. Metz / Journal of Mathematical Psychology 50 (2006) 478–487486



Bunch, P. C., Hamilton, J. F., Sanderson, G. K., & Simmons, A. H.

(1978). A free response approach to the measurement and character-

ization of radiographic-observer performance. Journal of Applied

Photographic Engineering, 4, 166–172.

Chakraborty, D. P. (1989). Maximum likelihood analysis of free-response

operating characteristic (FROC) data. Medical Physics, 16, 561–568.

Chakraborty, D. P. (2002). Statistical power in observer-performance

studies: Comparison of the receiver operating characteristic and free-

response methods in tasks involving localization. Academic Radiology,

9, 147–156.

Chan, H.-P., Sahiner, B., Hadjiiski, L. M., Petrick, N., & Zhou, C. (2003).

Design of three-class classifiers in computer-aided diagnosis: Monte

carlo simulation study. In M. Sonka, J.M. Fitzpatrick (Eds.),

Proceedings of the SPIE, medical imaging 2003: Image processing

(Vol. 5032, pp. 567–578). Bellingham, WA: SPIE.

Dreiseitl, S., Ohno-Machado, L., & Binder, M. (2000). Comparing three-

class diagnostic tests by three-way ROC analysis. Medical Decision

Making, 20, 323–331.

Edwards, D. C., Lan, L., Metz, C. E., Giger, M. L., & Nishikawa, R. M.

(2004a). Estimating three-class ideal observer decision variables for

computerized detection and classification of mammographic mass

lesions. Medical Physics, 31, 81–90.

Edwards, D. C., Metz, C. E., & Kupinski, M. A. (2004b). Ideal observers

and optimal ROC hypersurfaces in N-class classification. IEEE

Transactions on Medical Imaging, 23, 891–895.

Edwards, D. C., Metz, C. E., & Nishikawa, R. M. (2005). The

hypervolume under the ROC hypersurface of ‘near-guessing’ and

‘near-perfect’ observers in N-class classification tasks. IEEE Transac-

tions on Medical Imaging, 24, 293–299.

Ferri, C., Hernández-Orallo, J., & Salido, M. A. (2003). Volume under the

ROC surface for multi-class problems: Exact computation and evalua-

tion of approximations. Technical Report, Dep. Sistemes Informàtics i
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Hand, D. J., & Till, R. J. (2001). A simple generalisation of the area under

the ROC curve for multiple class classification problems. Machine

Learning, 45, 171–186.

He, X., Metz, C. E., Tsui, B. M. W., Links, J. M., & Frey, E. C. (2006).

Three-class ROC analysis—A decision theoretic approach under the

ideal observer framework. IEEE Transactions on Medical Imaging, 25,

571–581.

Huo, Z., Giger, M. L., & Metz, C. E. (1999). Effect of dominant features

on neural network performance in the classification of mammographic

lesions. Physics in Medicine and Biology, 44, 2579–2595.

Huo, Z., Giger, M. L., & Vyborny, C. J. (2001). Computerized analysis of

multiple-mammographic views: Potential usefulness of special view

mammograms in computer-aided diagnosis. IEEE Transactions on

Medical Imaging, 20, 1285–1292.

Huo, Z., Giger, M. L., Vyborny, C. J., & Metz, C. E. (2002). Breast

cancer: Effectiveness of computer-aided diagnosis—Observer study

with independent database of mammograms. Radiology, 224,

560–568.

Huo, Z., Giger, M. L., Vyborny, C. J., Wolverton, D. E., & Metz, C. E.

(2000). Computerized classification of benign and malignant masses on

digitized mammograms: A study of robustness. Academic Radiology, 7,

1077–1084.

Huo, Z., Giger, M. L., Vyborny, C. J., Wolverton, D. E., Schmidt, R. A.,

& Doi, K. (1998). Automated computerized classification of malignant

and benign masses on digitized mammograms. Academic Radiology, 5,

155–168.

Kupinski, M. A. (2000). Computerized pattern classification in medical

imaging. Ph.D. Thesis, The University of Chicago, Chicago, IL.

Kupinski, M. A., Edwards, D. C., Giger, M. L., & Metz, C. E. (2001).

Ideal observer approximation using Bayesian classification neural

networks. IEEE Transactions on Medical Imaging, 20, 886–899.

Lachiche, N., & Flach, P. (2003). Improving accuracy and cost of two-

class and multi-class probabilistic classifiers using ROC curves. In

Proceedings of the twentieth international conference on machine

learning (ICML-2003) (pp. 416–423). Washington, DC: AAAI Press.

Mossman, D. (1999). Three-way ROCs. Medical Decision Making, 19,

78–89.

Nakas, C. T., & Yiannoutsos, C. T. (2004). Ordered multiple-class ROC

analysis with continuous measurements. Statistics in Medicine, 23,

3437–3449.

Obuchowski, N. A., Applegate, K. E., Goske, M. J., Arheart, K. L.,

Myers, M. T., & Morrison, S. (2001). The ‘differential diagnosis’ for

multiple diseases: Comparison with the binary-truth state experiment

in two empirical studies. Academic Radiology, 8, 947–954.

Patel, A. C., Markey, M. K. (2005). Comparison of three-class

classification performance metrics: A case study in breast cancer

CAD. In M.P. Eckstein, Y. Jiang (Eds.), Proceedings of the SPIE,

medical imaging 2005: Image perception, observer performance, and

technology assessment (Vol. 5749, pp. 581–589). Bellingham, WA,

SPIE.

Scurfield, B. K. (1996). Multiple-event forced-choice tasks in the theory of

signal detectability. Journal of Mathematical Psychology, 40, 253–269.

Scurfield, B. K. (1998). Generalization of the theory of signal detectability

to n-event m-dimensional forced-choice tasks. Journal of Mathematical

Psychology, 42, 5–31.

Srinivasan, A. (1999). Note on the location of optimal classifiers in n-

dimensional ROC space. Technical Report PRG-TR-2-99, Oxford

University Computing Laboratory, Wolfson Building, Parks Road,

Oxford.

Van Trees, H. L. (1968). Detection, estimation and modulation theory: Part

I. New York: Wiley.

Yin, F.-F., Giger, M. L., Doi, K., Metz, C. E., Vyborny, C. J., & Schmidt,

R. A. (1991). Computerized detection of masses in digital mammo-

grams: Analysis of bilateral subtraction images. Medical Physics, 18,

955–963.

Yin, F.-F., Giger, M. L., Doi, K., Vyborny, C. J., & Schmidt, R. A.

(1994). Computerized detection of masses in digital mammograms:

Automated alignment of breast images and its effect on bilateral-

subtraction technique. Medical Physics, 21, 445–452.

Yin, F.-F., Giger, M. L., Vyborny, C. J., Doi, K., & Schmidt, R. A.

(1993). Comparison of bilateral-subtraction and single-image proces-

sing techniques in the computerized detection of mammographic

masses. Investigation Radiology, 28, 473–481.

ARTICLE IN PRESS
D.C. Edwards, C.E. Metz / Journal of Mathematical Psychology 50 (2006) 478–487 487



G Restrictions on the Three-Class Ideal Observer’s De-

cision Boundary Lines

57



1566 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 24, NO. 12, DECEMBER 2005

Restrictions on the Three-Class Ideal Observer’s
Decision Boundary Lines

Darrin C. Edwards* and Charles E. Metz

Abstract—We are attempting to develop expressions for the co-
ordinates of points on the three-class ideal observer’s receiver op-
erating characteristic (ROC) hypersurface as functions of the set
of decision criteria used by the ideal observer. This is considerably
more difficult than in the two-class classification task, because the
conditional probabilities in question are not simply related to the
cumulative distribution functions of the decision variables, and be-
cause the slopes and intercepts of the decision boundary lines are
not independent; given the locations of two of the lines, the location
of the third will be constrained depending on the other two. In this
paper, we attempt to characterize those constraining relationships
among the three-class ideal observer’s decision boundary lines. As
a result, we show that the relationship between the decision criteria
and the misclassification probabilities is not one-to-one, as it is for
the two-class ideal observer.

Index Terms—Ideal observers, ROC analysis, three-class classi-
fication.

I. INTRODUCTION

RECEIVER operating characteristic (ROC) analysis is the
accepted methodology for analyzing the performance of

a two-class classifier [1], in particular for medical decision-
making tasks in which a patient is diagnosed as having or not
having a particular condition based on features of a medical
image [2]. In judging the performance of an observer measured
via ROC analysis, the standard for comparison is the so-called
ideal observer, that observer which outperforms any other pos-
sible observer given the statistical variability of the observa-
tional data being classified [1], [3]. Although the general form
of the ideal observer in a classification task with three or more
classes has been known for some time [3], the considerable com-
plexities inherent to this model compared to the two-class clas-
sification task have hampered the development of extensions
of ROC analysis which are both fully general and practically
useful. (Several researchers have recently proposed restricted
observer models or restricted evaluation methods [4]–[7].)

Despite these difficulties, research continues in this area be-
cause the advantages to be gained from a three-class classifier
and appropriate evaluation methodology are considerable. In
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our own case, we seek to combine existing computer-aided di-
agnosis (CAD) schemes for detecting [8]–[12] mammographic
mass lesions and classifying [13]–[17] them as malignant or be-
nign. The combined scheme would serve as a fully automated
classifier (the existing classifier requires initial manual identifi-
cation of lesions by a radiologist), potentially allowing radiolo-
gists to reduce their false-positive biopsy rate without reducing
their sensitivity for detection of malignancies. Simply concate-
nating the two types of scheme in a two-stage classifier would be
inadequate, because the output of the detection scheme will nec-
essarily include false-positive (FP) computer detections in addi-
tion to the malignant and benign lesions to be classified. These
FP computer detections correspond to objects which were by
design not included in the training sample of the classification
scheme, because they are not members of the data population
(benign and malignant mass breast lesions) for which the clas-
sification scheme was created. It is clear then that the detection
scheme’s output cannot be used unmodified as the input to the
classification scheme.

Our initial efforts toward the goal of developing a true
three-class classifier have been more theoretical than practical
so far. We have shown that, just as the two-class ideal observer
achieves the optimal two-class ROC curve for a given task,
the -class ideal observer achieves the optimal -class ROC
hypersurface [18]. (Note that the ideal observer is formally
defined as that which minimizes the expected Bayes risk [3],
and not in terms of classification performance, making this
a nontrivial observation in both cases.) More soberingly, we
found recently that an obvious generalization of the well-known
performance metric, the area under the ROC curve (AUC), is
not a useful performance metric in a classification task with
three or more classes [19].

At present we are attempting to develop expressions for the
coordinates of points on the three-class ideal observer’s ROC
hypersurface (the conditional probabilities for misclassifying
observations [18], [20], [21]) as functions of the set of decision
criteria used by the ideal observer. This is considerably more
difficult than in the two-class classification task for two reasons.
First, the conditional probabilities in question are not simply re-
lated to the cumulative distribution functions (cdfs) of the deci-
sion variables, but are integrals of those variables over domains
determined by three decision boundary lines [3]. Second, the
slopes and intercepts of the decision boundary lines are not inde-
pendent; given the locations of two of the lines, we have found
recently that the location of the third will be constrained de-
pending on the other two.

In this paper, we attempt to characterize the constraining rela-
tionships just mentioned among the three-class ideal observer’s

0278-0062/$20.00 © 2005 IEEE
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decision boundary lines. Although this paper is admittedly still
removed from image analysis perse, we hope it may prove of
interest to the CAD community and ultimately of relevance to a
wide variety of medical image analysis tasks. In the next section
we briefly review the structure of the three-class ideal observer
and the notation we have been using to characterize it [18]. In
Section III, we show that for a given location (slope and -inter-
cept) of the decision boundary line separating the first and third
classes, the location of one of the remaining two lines is con-
strained in a particular way based on the location of the other.

These results are discussed in Section IV. Given the arbitrari-
ness of the labels applied to the three classes (ie, which classes
are considered first, second, or third), one would expect the se-
lection of the fixed line in Section III to be similarly arbitrary,
and indeed in Appendices A and B we show that corresponding
and consistent results are obtained if one takes the location of
the decision boundary line separating the second and third, or
first and second, classes, respectively, to be given.

II. THE THREE-CLASS IDEAL OBSERVER

In [18], we showed that an -class ideal observer makes de-
cisions by partitioning a likelihood ratio decision variable space,
where the boundaries of the partitions are given by hyperplanes

(1)

(2)

Here, is the utility of deciding an observation is from class
given that it is actually from class ; is the apriori

probability that an observation is drawn from class ; and
is the th likelihood ratio, defined by the ratio
of the probability density functions of the observational data
(We use boldface type to denote random variables). The par-
titioning is determined by the parameters

(3)

with , , and varying from 1 to , and . Note that these
parameters are not independent, however, because

(4)

We can impose the reasonable condition that the utility for
correctly classifying an observation from a given class should be
greater than any utility for incorrectly classifying an observation
from the same class, i.e., . This gives, for

,

(5)

leaving positive parameters (the rest are derivable
from (4)).

Finally, note that the hyperplanes represented by (1) and (2)
are unchanged if we multiply all of these equations by a single

scalar, such as . This leaves us with
degrees of freedom, as expected.

The behavior of a three-class ideal observer is completely
determined by the three decision boundary lines

(6)

(7)

(8)

which we call, respectively, the “1-vs-2” line, the “1-vs-3” line,
and the “2-vs-3” line. Note that if any two of these lines inter-
sect, the third line must also share this intersection point. We
also emphasize the simple interpretation, from (3), of each of the

parameters appearing in these decision boundary line equa-
tions as the difference in utilities between a “correct” and one
particular “incorrect” decision (scaled by the apriori probability
of the true class in question); and of each difference in the
parameters as a difference in utilities between two possible “in-
correct” decisions [again scaled by the apriori probability of the
true class in question; e.g.,

].
From the conditions on the parameters in (5), we can

readily derive conditions on the decision boundaries themselves.
If we denote the slope of the “ -vs- ” line by , its -intercept
by , and its -intercept by , we have

(9)

(10)

(11)

These are the three conditions stated in [22].

III. RESTRICTIONS DETERMINED BY THE PARAMETERS OF THE

“1-VS.-3” LINE

Constraints on the decision boundaries, in addition to those
given in (9)–(11), can be obtained by considering the two cases

and . In the first case (ie,
, or ), we have

(12)

(13)

We also have

(14)

This is a weighted sum of the slopes and , where the
weights are positive and sum to one. Since we must have

from (9) and (12), it must therefore be the case that

(15)
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Fig. 1. Example ideal observer decision rules for the case  �  > 0

(implying m < 0 and b > 0) and b < 0. In (a), � < � , and
the “2-vs-3” line can lie anywhere between the two dashed lines shown (the
region between the lower dashed and dotted lines is excluded because b > 0);
observations in the unlabeled region above this line will be decided “� ,” and
those below this line will be decided “� .” In (b), � � � and the “2-vs-3”
line can lie anywhere in the unlabeled region (provided it shares the intersection
point of the “1-vs-2” and “1-vs-3” lines shown); observations above this line will
be decided “� ,” and those below this line will be decided “� .”

Fig. 2. Example ideal observer decision rules for the case  �  > 0

(implying m < 0 and b > 0) and b � 0. In (a), b < b , and the
“2-vs-3” line can lie anywhere in the unlabeled region; observations above this
line will be decided “� ,” and those below this line will be decided “� .” In
(b), b � b and the “2-vs-3” line can lie anywhere between the “1-vs-2” and
“1-vs-3” lines (provided it shares their intersection point); note that observations
in this region will be decided “� ” regardless of the position of this line.

Furthermore

(16)

This is a weighted sum of the -intercepts and , where the
weights are positive and sum to one; thus, in addition to (15), we
have the condition

(17)

If , then (17) immediately reduces to
(by (13), we are considering a special case in which ).
This is illustrated in Fig. 1 for the slightly different situations

and . If, on the other hand, , then
(15) and (17) together imply two possible situations, depending
on whether or . These possibilities are
illustrated in Fig. 2.

We now consider the case (ie, ,
or ), which yields

(18)

(19)

We now have

(20)

This is again a weighted sum in which the weights are positive
and sum to one, giving

(21)

Furthermore

(22)

This is a weighted sum of the -intercepts and , where the
weights are positive and sum to one; thus, in addition to (21), we
have the condition

(23)

since by (11) and (19).
If , then (21) immediately reduces to

(by (18), we are considering a special case in which
). This is illustrated in Fig. 3 for the slightly different situations

and . If, on the other hand, , then
(21) and (23) together imply two possible situations, depending
on whether or . These possibilities are
illustrated in Fig. 4.

One may of course ask what happens when
(ie, , or ). In this case, both and

are infinite. Furthermore

(24)
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Fig. 3. Example ideal observer decision rules for the case  �  < 0

(implying m > 0 and b < 0) and m < 0. In (a), � < � , and the
“1-vs-2” line can lie anywhere between the two dashed lines shown (the region
between the lower dashed and dotted lines is excluded because m > 0);
observations in the unlabeled region above this line will be decided “� ,” and
those below this line will be decided “� .” In (b), � � � and the “1-vs-2”
line can lie anywhere in the unlabeled region (provided it shares the intersection
point of the “1-vs-3” and “2-vs-3” lines shown); observations above this line will
be decided “� ”, and those below this line will be decided “� .”

Fig. 4. Example ideal observer decision rules for the case  �  < 0

(implying m > 0 and b < 0) and m � 0. In (a), m < m , and the
“1-vs-2” line can lie anywhere in the unlabeled region; observations above this
line will be decided “� ”, and those below this line will be decided “� ”. In (b),
m � m , and the “1-vs-2” line can lie anywhere between the “1-vs-3” and
“2-vs-3” lines (provided it shares their intersection point); note that observations
in this region will be decided “� ” regardless of the position of this line.

and

(25)

Together, (24) and (25) can be considered either a special case
of the inequalities (15) and (17), if we take and

; or of the inequalities (21) and (23), if we take
and . This situation, for the slightly

different cases and , is illustrated in Fig. 5.
In this section, the possible values of the quantity

were considered in order to determine properties of the ideal ob-
server decision boundary lines. It may be argued that the choice
of a parameter from the “1-vs-3” line, i.e., one of the three avail-
able lines, must be an arbitrary one. In fact, we may consider
taking another parameter (or combination of parameters) from
(6)–(8), and using it to determine conditions on the properties

Fig. 5. Example ideal observer decision rules for the case  �  = 0

(implying m = �1 and b = �1). In (a), b < 0 and the “2-vs-3” line
can lie anywhere between the two dashed lines shown (the region between the
lower dashed and dotted lines is excluded because b > 0); observations in the
unlabeled region above this line will be decided “� ,” and those below this line
will be decided “� .” In (b), b � 0 and the “2-vs-3” line can lie anywhere
in the unlabeled region; observations above this line will be decided “� ,” and
those below this line will be decided “� .”

of the decision boundary lines as above. Given that all possible
values of the quantity were considered, it is expected
that no new conditions should be determinable (let alone con-
ditions inconsistent with those already determined). In fact, this
can readily be shown to be the case; however, due to the repet-
itive nature of the derivations involved, these are relegated to
Appendices A and B.

IV. DISCUSSION AND CONCLUSION

The repetitive nature of the algebraic manipulations given in
the preceding section and the Appendices should not be allowed
to distract from the fundamental point being made: given the
locations of two of the decision boundary lines, the location
of the third is not completely arbitrary. That is, aside from the
obvious [given (6)–(8)] constraint that the lines must share a
common intersection point, it can also be shown that the slope
of the third line is constrained by the slopes of the first two.

The significance of this result may be difficult to appreciate
at first glance. It is perhaps best illustrated by comparison with
the two-class classifier, for which the ROC operating point coor-
dinates [e.g., the true-positive fraction (TPF) and false-positive
fraction (FPF)] are determined by a single decision criterion ,
which is free to vary without restriction throughout its domain
of definition. For the two-class ideal observer, in particular, an
observation is decided “positive” (assigned to the class ) if

, where can take on any nonnegative value. Further-
more, the FPF and TPF are related in a very simple way to the
cdfs of , and are thus monotonic in the decision criterion .
For the three-class ideal observer, this straightforward relation-
ship is lost; indeed, Figs. 2(b), 4(b), 7(b), 9(b), 12(b), and 14(b)
show that for certain values of four of the five decision criteria

, the misclassification probabilities (ie, the ROC operating
point coordinates) can be independent of the fifth decision cri-
terion.

More succinctly, the relationship between the decision cri-
teria and the misclassification probabilities is not one-to-one,
as it is for the two-class ideal observer. A correct formulation
of the misclassification probabilities as functions of the deci-
sion criteria—necessary for an explicit calculation of the ideal



1570 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 24, NO. 12, DECEMBER 2005

Fig. 6. Example ideal observer decision rules for the case  �  > 0

(implying 1=m < 0 and � > 0) and � < 0. In (a), b < b , and
the “1-vs-3” line can lie anywhere between the two dashed lines shown (the
region between the left dashed and dotted lines is excluded because � > 0);
observations in the unlabeled region to the right of this line will be decided “� ,”
and those to the left of this line will be decided “� .” In (b), b � b and the
“1-vs-3” line can lie anywhere in the unlabeled region (provided it shares the
intersection point of the “1-vs-2” and “2-vs-3” lines shown); observations to the
right of this line will be decided “� ,” and those to the left of this line will be
decided “� .”

observer’s ROC hypersurface given the decision variable prob-
ability density functions—will require careful consideration of
this issue. Although we have shown previously that the hyper-
volume under the ROC hypersurface is not a useful performance
metric in general [19], it is still the case that the ROC hyper-
surface in terms of the set of misclassification probabilities (six
in the three-class classification task) is a complete description
of observer performance. We expect that a useful performance
metric, assuming one exists, will be derived in some fashion
from the ROC hypersurface. It is thus important to develop a
complete understanding of the rather complicated relationships
among the quantities involved, and we hope that this paper will
prove of some use toward this goal.

APPENDIX A
RESTRICTIONS DETERMINED BY THE PARAMETERS OF THE

“2-VS.-3” LINE

Consider the quantity from (8). In particular, when
(ie, , or ), we have

(26)

(27)

Through reasoning similar to that of Section III, we also have

(28)

and

(29)

If , then (29) immediately reduces to
(by (27), we are considering a special case in which

). This is illustrated in Fig. 6 for the slightly different situations

Fig. 7. Example ideal observer decision rules for the case  �  > 0

(implying 1=m < 0 and � > 0) and � � 0. In (a), � < � , and
the “1-vs-3” line can lie anywhere in the unlabeled region; observations to the
left of this line will be decided “� ,” and those to the right of this line will be
decided “� .” In (b),� � � and the “1-vs-3” line can lie anywhere between
the “1-vs-2” and “2-vs-3” lines (provided it shares their intersection point); note
that observations in this region will be decided “� ” regardless of the position
of this line.

Fig. 8. Example ideal observer decision rules for the case  �  < 0

(implying 1=m > 0 and � < 0) and 1=m < 0. In (a), b < b ,
and the “1-vs-2” line can lie anywhere between the two dashed lines shown
(the region between the vertical dashed and dotted lines is excluded because
m > 0 and, therefore, 1=m � 0); observations in the unlabeled region
above this line will be decided “� ,” and those below this line will be decided
“� .” In (b), b � b and the “1-vs-2” line can lie anywhere in the unlabeled
region (provided it shares the intersection point of the “1-vs-3” and “2-vs-3”
lines shown); observations above this line will be decided “� ”, and those below
this line will be decided “� .”

and . If, on the other hand, , then
(28) and (29) together imply two possible situations, depending
on whether or . These possibilities are
illustrated in Fig. 7.

If (ie, , or ), we have

(30)

(31)

One can also show

(32)

and

(33)

If , then (32) immediately reduces to
(by (30), we are considering a special case in

which ). This is illustrated in Fig. 8 for the slightly
different situations and . If, on the other
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Fig. 9. Example ideal observer decision rules for the case  �  < 0

(implying 1=m > 0 and � < 0) and 1=m � 0. In (a),
1=m < 1=m , and the “1-vs-2” line can lie anywhere in the unlabeled
region; observations above this line will be decided “� ,” and those below this
line will be decided “� .” In (b), 1=m � 1=m and the “1-vs-2” line can
lie anywhere between the “1-vs-3” and “2-vs-3” lines (provided it shares their
intersection point); note that observations in this region will be decided “� ”
regardless of the position of this line.

Fig. 10. Example ideal observer decision rules for the case  �  = 0

(implying 1=m = �1 and � = �1). In (a), � < 0, and the “1-vs-3”
line can lie anywhere between the two dashed lines shown (the region between
the leftmost dashed and dotted lines is excluded because� > 0); observations
in the unlabeled region to the right of this line will be decided “� ,” and those
to the left of this line will be decided “� .” In (b), � � 0 and the “1-vs-3”
line can lie anywhere in the unlabeled region; observations to the right of this
line will be decided “� ,” and those to the left of this line will be decided “� .”

hand, , then (32) and (33) together imply two pos-
sible situations, depending on whether or

. These possibilities are illustrated in Fig. 9.
Finally, we consider the case (

or ), in which both and are infinite. We
now have

(34)

and

(35)

Together, (34) and (35) can be considered either a special
case of the inequalities (28) and (29), if we take
and ; or of the inequalities (32) and (33), if we take

and . This situation, for the slightly
different cases and , is illustrated in Fig. 10.

Notice that every figure in this appendix has one or more
corresponding figures in Section III (depending on the possible

values of the undetermined decision boundary parameter being
illustrated in that figure). Specifically

That is, none of the conditions derived in this section are in-
consistent with those derived Section III. More importantly, note
the symmetry between the corresponding equations and figures
in Section III and this appendix, if one “swaps” the labels of
classes and , and additionally replaces with ,

with , and with ( if , 2 if , and
3 if ; similarly for ). Intuitively, if one “flips” the figures
in one section about the line, one obtains the figures in
the other section.

APPENDIX B
RESTRICTIONS DETERMINED BY THE PARAMETERS OF THE

“1-VS.-2” LINE

In this appendix, we consider the possible values of the quan-
tity . As in the preceding Appendix, we expect to
obtain no conditions inconsistent with those already derived.

When (ie, , or ), we
have

(36)

(37)

Through reasoning similar to that of Section III, we also have

(38)

and

(39)

If , then (39) immediately reduces to
(by (37), we are considering a special case in

which ). This is illustrated in Fig. 11 for the slightly
different situations and . If, on the
other hand, , then (38) and (39) together imply two
possible situations, depending on whether or

. These possibilities are illustrated in Fig. 12.
If (ie, , or ), we have

(40)

(41)
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Fig. 11. Example ideal observer decision rules for the case  �  > 0

(implying 1=b < 0 and 1=� > 0) and 1=� � 0. In (a), m < m ,
and the “1-vs-3” line can lie anywhere between the two dashed lines shown
(the region between the horizontal dashed and dotted lines is excluded because
� > 0 and, therefore, 1=� � 0); observations in the unlabeled region to
the left of this line will be decided “� ”, and those to the right of line will be
decided “� .” In (b),m � m , and the “1-vs-3” line can lie anywhere in the
unlabeled region (provided it shares the intersection point of the “1-vs-2” and
“2-vs-3” lines shown); observations to the left of this line will be decided “� ,”
and those to the right of this line will be decided “� .”

Fig. 12. Example ideal observer decision rules for the case  �  > 0

(implying 1=b < 0 and 1=� > 0) and 1=� > 0. In (a), 1=� < 1=�
and the “1-vs-3” line can lie anywhere in the unlabeled region; observations to
the left of this line will be decided “� ,” and those to the right of this line will be
decided “� .” In (b), 1=� � 1=� , and the “1-vs-3” line can lie anywhere
between the “1-vs-2” and “2-vs-3” lines (provided it shares their intersection
point); note that observations in this region will be decided “� ” regardless of
the position of this line.

One can also show

(42)

and

(43)

If , then (42) immediately reduces to
(by (40), we are considering a special case in

which ). This is illustrated in Fig. 13 for the slightly
different situations and . If, on the
other hand, , then (42) and (43) together imply two
possible situations, depending on whether or

. These possibilities are illustrated in Fig. 14.

Fig. 13. Example ideal observer decision rules for the case  �  < 0

(implying 1=b > 0 and 1=� < 0) and 1=b � 0. In (a), m < m ,
and the “2-vs-3” line can lie anywhere between the two dashed lines shown
(the region between the vertical dashed and dotted lines is excluded because
b > 0, and therefore 1=b � 0); observations in the unlabeled region above
this line will be decided “� ,” and those below this line will be decided “� .”
In (b), m � m , and the “2-vs-3” line can lie anywhere in the unlabeled
region (provided it shares the intersection point of the “1-vs-2” and “1-vs-3”
lines shown); observations above this line will be decided “� ,” and those below
this line will be decided “� .”

Fig. 14. Example ideal observer decision rules for the case  �  < 0

(implying 1=b > 0 and 1=� < 0) and 1=b > 0. In (a), 1=b < 1=b ,
and the “2-vs-3” line can lie anywhere in the unlabeled region; observations
above this line will be decided “� ,” and those below this line will be decided
“� ”. In (b), 1=b � 1=b , and the “2-vs-3” line can lie anywhere between
the “1-vs-2” and “1-vs-3” lines (provided it shares their intersection point); note
that observations in this region will be decided “� ” regardless of the position
of this line.

Finally, we consider the case (ie,
, or ), in which both and are infi-

nite. We now have

(44)

and

(45)

Together, (44) and (45) can be considered either a special
case of the inequalities (38) and (39), if we take
and ; or of the inequalities (42) and (43), if we
take and . This situation, for the
slightly different cases and , is illustrated
in Fig. 15.

Notice that every figure in this appendix has one or more
corresponding figures in Section III (depending on the possible
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Fig. 15. Example ideal observer decision rules for the case  �  = 0

(implying 1=b = �1 and 1=� = �1). In (a), 1=b � 0, and the
“2-vs-3” line can lie anywhere between the two dashed lines shown (the region
between the vertical dashed and dotted lines is excluded because 1=b � 0);
observations in the unlabeled region to above this line will be decided “� ,” and
those below this line will be decided “� .” In (b), 1=b > 0, and the “2-vs-3”
line can lie anywhere in the unlabeled region; observations above this line will
be decided “� ,” and those below this line will be decided “� .”

values of the undetermined decision boundary parameter being
illustrated in that figure). Specifically

That is, none of the conditions derived in this appendix
are inconsistent with those derived in Section III or Ap-
pendix A. More importantly, note the symmetry between the
corresponding equations and figures in Sections III and this
appendix, if one “swaps” the labels of classes and , and
additionally replaces with , with , and

with ( if , 2 if , and 3 if ;
similarly for ).
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Optimization of an ROC hypersurface constructed only from

an observer’s within-class sensitivities
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ABSTRACT

We have shown in previous work that an ideal observer in a classification task with N classes achieves the optimal
receiver operating characteristic (ROC) hypersurface in a Neyman-Pearson sense. That is, the hypersurface
obtained by taking one of the ideal observer’s misclassification probabilities as a function of the other N2−N−1
misclassification probabilities is never above the corresponding hypersurface obtained by any other observer.
Due to the inherent complexity of evaluating observer performance in an N -class classification task with N > 2,
some researchers have suggested a generally incomplete but more tractable evaluation in terms of a hypersurface
plotting only the N “sensitivities” (the probabilities of correctly classifying observations in the various classes).
An N -class observer generally has up to N2−N−1 degrees of freedom, so a given sensitivity will still vary when
the other N − 1 are held fixed; a well-defined hypersurface can be constructed by considering only the maximum
possible value of one sensitivity for each achievable value of the other N − 1. We show that optimal performance
in terms of this generally incomplete performance descriptor, in a Neyman-Pearson sense, is still achieved by
the N -class ideal observer. That is, the hypersurface obtained by taking the maximal value of one of the ideal
observer’s correct classification probabilities as a function of the other N − 1 is never below the corresponding
hypersurface obtained by any other observer.

Keywords: ROC analysis, three-class classification, ideal observer decision rules

1. INTRODUCTION

We are attempting to extend the well-known observer performance evaluation methodology of receiver operating
characteristic (ROC) analysis1, 2 to classification tasks with three classes. This could conceivably be of benefit,
for example, in a medical decision-making task in which a region of a patient image must be characterized as
containing a malignant lesion, a benign lesion, or only normal tissue.3

Unfortunately, a fully general but tractable extension of ROC analysis has yet to be developed. It is known
that the performance of an observer in a classification task with N classes (N ≥ 2) can be completely described
by a set of N2 − N conditional error probabilities,4, 5 and that the performance of the ideal observer (that
which minimizes Bayes risk4) is completely characterized by an ROC hypersurface in which these conditional
error probabilities depend on a set of N2 −N − 1 decision criteria.5 Although analytic expressions for the ideal
observer’s conditional error probabilities given reasonable models for the underlying observational date have
been worked out in the two-class case,6 this has not yet been accomplished in a fully general manner for tasks
with three or more classes. Furthermore, we have shown that an obvious generalization of the area under the
ROC curve (AUC) does not in fact yield a useful performance metric in tasks with three or more classes.7 More
recently, we showed that complicated constraining relationships exist among the decision criteria themselves for
the ideal observer.8 These constraining relationships appear to imply that it is highly unlikely that analytical
expressions for the conditional error probabilities in terms of the decision criteria can be developed which are as
simple to interpret as those for the two-class task.6

Despite the difficulties just described, the potential benefits to be gained from a practical performance eval-
uation methodology for classification tasks with three classes have motivated a number of research groups to
propose such methods. These practical methods reduce the number of degrees of freedom required to describe
the observer’s performance, either by implicitly leaving the remaining degrees of freedom out of the analysis, or
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by explicitly imposing restrictions on the form of the observer’s decision rule or on the set of decision criteria
used by the observer.

Scurfield evaluated an observer which used a specified decision rule with only two degrees of freedom (as
opposed to the five decision criteria used by the general three-class ideal observer) by plotting a set of six
(two-dimensional) surfaces in three-dimensional ROC spaces.9 Mossman proposed plotting the surface formed
only from the set of three “sensitivities” (conditional probabilities of correctly classifying observations) for an
observer with two degrees of freedom, and applied this method to an observer with a specified decision rule.10

Chan et al. began with an ideal observer model, and reduced the number of decision criteria from five to two by
imposing explicit assumptions on the observer’s decision utilities; the observer’s performance was then plotted
as a surface in a three-dimensional ROC space, the axes of which are the probabilities of deciding an observation
to be malignant conditional on each of the three actual class memberships.11 He et al. investigated an ideal
observer model in which the decision rule is restricted to a form similar to that proposed by Scurfield; the nature
of the restrictions is such that performance evaluation in terms of only the three sensitivities provides a complete
description of this observer’s performance.12

A common theme among these remarkably diverse methods is the idea of an “ROC surface,” i.e., a surface
with two degrees of freedom in a three-dimensional ROC space. An appealing feature of such a construct is
its visualizability: it can be plotted as readily as any elevation map, for example, in stark contrast to the fully
general three-class classification task involving a hypersurface with five degrees of freedom in a six-dimensional
ROC space as mentioned above. While it is true that not all of the proposed methods described in the preceding
paragraph involve a “sensitivity” ROC surface, the general division of an N -class observer’s conditional decision
probabilities into a set of N sensitivities and a set of N2 − N misclassification rates5 makes this particular
construct a natural candidate for further analysis.

On the other hand, it can be argued that measurement of performance in terms of only N conditional
classification rates must be an incomplete description of observer performance in a classification task with
more than two classes, which requires N2 − N such classification rates as stated above. Acknowledging this
incompleteness, we would like to ask whether there is any sense in which such an incomplete performance metric
is at least well-defined. In particular, is there any observer decision rule, dependent on only N − 1 (rather
than N2 − N − 1) decision criteria, for which the observer’s sensitivity ROC hypersurface is always above the
corresponding hypersurface obtained for any other observer? If so, what form does this decision rule take?

In the next section, we show that the three-class observer which optimizes performance only in terms of the
sensitivity surface is in fact the three-class ideal observer, with its decision utilities constrained in a particular
way (reducing its degrees of freedom from five to two as necessary). Additionally, the form of the constraints
on the ideal observer’s behavior are identical to those considered by He et al..12 In Sec. 3, we extend this result
to the general case of an N -class observer, showing that the observer which attains the optimal sensitivity
hypersurface is a restricted form of the N -class ideal observer, and in particular a straightforward generalization
of the three-class observer considered by He et al.12 to N classes. Our conclusions are stated in Sec. 4.

2. THREE-CLASS OBSERVERS

We have shown5 that the N -class ideal observer — that observer which minimizes Bayes risk — also achieves
optimal performance in an ROC sense, by virtue of satisfying the Neyman-Pearson criterion. This was the same
argument used by Van Trees4 to show that the two-class ideal observer achieves the optimal ROC curve for
a given two-class classification task. This technique of satisfying the Neyman-Pearson criterion, essentially an
application of an integral form of the method of Lagrange multipliers,13 is straightforward (conceptually, if not
notationally) and flexible, and we apply it in this section to answer the question of what observer optimizes
performance in terms of only the three observer sensitivities.

We denote by Pij the conditional probability of a given observer deciding an observation is drawn from the
ith class, conditional on it actually being drawn from the jth class. Thus, the three sensitivities are P11, P22,
and P33. Decisions are assumed to be made based on statistically variable observational data; in particular,

Pij ≡

∫

Zi

p(~x|πj) dm~x, (1)



where Zi is the region for which observations ~x (of dimension m) are decided to belong to the class labeled πi

(1 ≤ i ≤ 3).

Without loss of generality, we seek to maximize P33 subject to the constraints P11 = α11 and P22 = α22

where 0 ≤ α11 ≤ 1 and 0 ≤ α22 ≤ 1. We define the function

F ≡ P33 + λ11(P11 − α11), +λ22(P22 − α22) (2)

where λ11 and λ22 are the so-called Lagrange multipliers. Note that if we can find a decision rule (a partitioning
of the domain of ~x into Z1, Z2, and Z3) that maximizes F for arbitrary values of λ11 and λ22, then this will
be equivalent to maximizing P33 at the point at which the constrain equations are satisfied (i.e., at the point
P11 = α11, P22 = α22).

We first rewrite F by applying rules for conditional probabilities:

F = −λ11α11 − λ22α22 + (1 − P13 − P23) + λ11(1− P21 − P31) + λ22(1 − P12 − P32)

= 1 + λ11(1− α11) + λ22(1 − α22)− {λ22P12 + P13 + λ11P21 + P23 + λ11P31 + λ22P32}

= 1 + λ11(1− α11) + λ22(1 − α22)−

{
∫

Z1

λ22p(~x|π2) + p(~x|π3) dm~x

+

∫

Z2

λ11p(~x|π1) + p(~x|π3) dm~x +

∫

Z3

λ11p(~x|π1) + λ22p(~x|π2) dm~x

}

. (3)

For a given set of values of the parameters λ11 and λ22, F is maximized when the quantity in braces is minimized.
This quantity, in turn, can be minimized by assigning a given ~x to the region Zi such that the ith integrand
(from among the integrals in braces in Eq. 3) is minimized. (Situations in which two or more of the integrands
yield the same minimal value for a given ~x can be decided in an arbitrary but consistent fashion.)

That is,

decide π1 iff λ22p(~x|π2) < λ11p(~x|π1) and p(~x|π3) < λ11p(~x|π1) (4)

decide π2 iff λ11p(~x|π1) ≤ λ22p(~x|π2) and p(~x|π3) < λ22p(~x|π2) (5)

decide π3 iff λ11p(~x|π1) ≤ p(~x|π3) and λ22p(~x|π2) ≤ p(~x|π3). (6)

We can divide these relations by p(~x|π3) to obtain

decide π1 iff λ11LR1 − λ22LR2 > 0 and λ11LR1 > 1 (7)

decide π2 iff λ11LR1 − λ22LR2 ≤ 0 and λ22LR2 > 1 (8)

decide π3 iff λ11LR1 ≤ 1 and λ22LR2 ≤ 1, (9)

where LRi ≡ p(~x|πi)/p(~x|π3) are the likelihood ratio decision variables used by the ideal observer.4, 5 The decision
boundary lines which partition the (LR1, LR2) decision plane into the regions Z1, Z2, and Z3 are thus

λ11LR1 − λ22LR2 = 0 (10)

λ11LR1 = 1 (11)

λ22LR2 = 1. (12)

Note that Eq. 12 is just the difference between Eqs. 10 and 11. If we require λ11 and λ22 to be positive, the
decision rule is an ideal observer decision rule.5 Since neither the decision variables nor the form of the decision
rule depend on the particular choices of α11 and α22, we can conclude that the three-class sensitivity ROC
surface, obtained by allowing λ11 and λ22 to take on all possible positive values, is optimal for the observer
defined in Eqs. 10–12, in the sense that no other observer can achieve a higher sensitivity surface (i.e., a surface
with a greater value of P33 at a given value of (P11, P22)). The optimal observer for this performance metric is
seen to be the three-class ideal observer, with its decision criteria constrained so that the line separating classes
π1 and π3 is vertical, the line separating classes π2 and π3 is horizontal, and the line separating classes π1 and
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Figure 1. The decision rule which is found to be optimal in the sense of maximizing the ROC surface composed of only
the observer sensitivities. The decision variables are the likelihood ratios used by the general three-class ideal observer,
and the number of decision criteria is reduced from five (for the general three-class ideal observer) to two.

π2 passes through the origin with slope λ11/λ22 (and thus intersects the other two lines as required). Note that
the number of free decision criteria has been reduced from five (for the general three-class ideal observer) to two
(as expected for a surface in a three-dimensional ROC space).

This decision rule is shown in Fig. 1. It is interesting to note that this observer is identical to the special case
of the ideal observer evaluated by He et al.,12 which we have shown14, 15 to be a special case of the decision rule
proposed by Scurfield.9

3. N -CLASS OBSERVERS

The results of the preceding section can be generalized to tasks with N classes for any N > 2. We now have
a set of N2 conditional classification probabilities Pij , with N sensitivities Pii. Equation 1 remains unchanged,
except that there are of course now N regions Zi into which the domain of ~x is partitioned (i.e., classes into
which the observations are classified), and the observations are drawn from N distributions of the form p(~x|πj).

Without loss of generality, we seek to maximize PNN subject to the constraints Pii = αii for 1 ≤ i ≤ N − 1,
where 0 ≤ αii ≤ 1. We define the function

F ≡ PNN +

N−1
∑

i=1

λii(Pii − αii), (13)

where the λii are the Lagrange multipliers. Note that if we can find a decision rule (a partitioning of the
domain of ~x into Zi {1 ≤ i ≤ N}) that maximizes F for arbitrary values of the λii, then this will be equivalent
to maximizing PNN at the point at which the constrain equations are satisfied (i.e., at the point Pii = αii

{1 ≤ i ≤ N − 1}).

As in the preceding section, we rewrite F by applying rules for conditional probabilities to obtain:

F = −

N−1
∑

i=1

λiiαii +

(

1−

N−1
∑

i=1

PiN

)

+

N−1
∑

i=1

λii






1−

N
∑

j=1

j 6=i

Pji









= 1 +

N−1
∑

i=1

λii(1 − αii)−

















N−1
∑

i=1







N
∑

j=1

j 6=i

λjjPij






+ PiN






+

[

N−1
∑

i=1

λiiPNi

]











= 1 +

N
∑

i=2

λii(1− αii)

−











N−1
∑

i=1

∫

Zi







N
∑

j=1

j 6=i

λjjp(~x|πj)






+ p(~x|πN ) dm~x +

∫

ZN

N−1
∑

i=1

λiip(~x|πi) dm~x











. (14)

For a given set of values of the parameters λii {1 ≤ i ≤ N − 1}, F is maximized when the quantity in braces
is minimized. This quantity, in turn, can be minimized by assigning choosing the regions Zi such that a given
~x to the region Zi such that the ith integrand (from among the integrals in braces in Eq. 14) is minimized.
(Situations in which two or more of the integrands yield the same minimal value for a given ~x can be decided in
an arbitrary but consistent fashion.)

That is,

decide πi{i < N} iff λjjp(~x|πj) < λiip(~x|πi) {i < j < N}

and p(~x|πN ) < λiip(~x|πi)

and λjjp(~x|πj) ≤ λiip(~x|πi) {j < i < N} (15)

decide πN iff λjjp(~x|πj) ≤ p(~x|πN ) {j < N}. (16)

We can divide these relations by p(~x|πN ) to obtain

decide πi{i < N} iff λiiLRi − λjjLRj > 0 {i < j < N}

andλiiLRi > 1

andλjjLRj − λiiLRi ≤ 0 {j < i < N} (17)

decide πN iff λjjLRj ≤ 1 {j < N}, (18)

where LRi ≡ p(~x|πi)/p(~x|πN ) are the likelihood ratio decision variables used by the ideal observer.4,5 The

decision boundary hyperplanes which partition the ~LR ≡ (LR1, . . . , LRN−1) decision space into the regions Zi

are thus

λiiLRi − λjjLRj = 0 {i < j < N} (19)

λiiLRi = 1 {i < N}. (20)

Note that any of these equations, for example that defining part of the boundary between classes πj and πk , can
be expressed as the difference of two other such equations (in this example, those defining boundaries between
classes πi and πj , and between classes pii and πk). If we require the λii to be positive, the resulting decision rule
is an ideal observer decision rule.5 Since neither the decision variables nor the form of the decision rule depend
on the particular choices of αii, we can conclude that the N -class sensitivity ROC hypersurface, obtained by
allowing the λii to take on all possible positive values, is optimal for the observer defined in Eqs. 19 and 20, in
the sense that no other observer can achieve a higher sensitivity hypersurface (i.e., one with a greater value of
PNN at a given value of (P11, . . . , P(N−1)(N−1))). The optimal observer for this performance metric is seen to
be the N -class ideal observer, with its decision criteria constrained so that the boundary separating classes πi

and πN is a hyperplane defined by LRi = 1/λii, while the boundary separating classes πi and πj is a hyperplane
defined by λiiLRi = λjjLRj .

Although an intuitive geometric understanding of this decision rule is more elusive than in the three-class
case, it is at least evident that the boundaries intersect as expected; that is, the boundary separating classes
πi and πj intersects the boundary separating classes πi and πk, and also intersects the boundary separating



classes πj and πk. Note also that the number of free decision criteria has been reduced from N2 − N − 1 (for
the general N -class ideal observer) to N − 1 (as expected for a hypersurface in an N -dimensional ROC space).
More importantly, comparison of Eqs. 19 and 20 with Eqs. 10–12 reveals this N -class observer to be an obvious
extension from three to N classes of the observer described in the preceding section.

4. CONCLUSIONS

A fully general performance evaluation methodology for the three-class classification task has yet to be developed,
a frustrating state of affairs given the great success and wide application of ROC analysis to two-class classification
tasks. A primary reason for the difficulty in developing a fully general extension of ROC analysis to the three-
class classification task is the rapid increase in the number of performance measurement variables and decision
criteria necessary to characterize observer (in particular, ideal observer) performance. Specifically, the number
of sensitivities or misclassification rates needed increases from two to six (and to N2 −N in the general case),
while the number of decision criteria increases from a single decision variable threshold to a set of five mutually
constrained8 criteria (and to N2 −N − 1 in the general case). In short, the complexity of the problem increases
not linearly with the number of classes, but quadratically.

The motivation for the numerous proposed methods, outlined in Sec. 1, for evaluating the performance of
a three-class classifier in terms of two-dimensional surfaces in three-dimensional ROC spaces (rather than the
five-dimensional hypersurfaces in six-dimensional ROC spaces required by the theory) is thus quite clear. We
currently lack a theoretical framework with which to judge the appropriateness of any of the proposed methods
to any particular classification task. However, even if one chooses to adopt a performance evaluation metric
known to provide an incomplete description of observer performance, it is still reasonable to ask what observer,
if any, will achieve optimal performance with respect to that metric.

We have addressed that question in regard to measurement of an observer’s performance in terms of only
its sensitivities (the probabilities of correctly classifying the three, or in general N , classes of observations).
Theoretically, this is clearly an incomplete measure of performance (another set of three, or in general N2− 2N ,
misclassification rates are necessary). Conceding this point, we consider it a nontrivial observation, derived in
the preceding sections, that the observer which optimizes this limited performance metric is not one unrelated
to the general ideal observer, nor an arcane special case of the ideal observer, but a special case of the ideal
observer which is in a subjective sense quite simple, and which has been independently evaluated from very
different perspectives by other researchers.9,12 We find these results at once reassuring and encouraging, and
hope that research into this thorny problem will continue to bear unexpected fruit.
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Optimization of restricted ROC surfaces in
three-class classification tasks

Darrin C. Edwards∗ and Charles E. Metz

Abstract— We have shown previously that anN -class ideal
observer achieves the optimal receiver operating characteristic
(ROC) hypersurface in a Neyman-Pearson sense. Due to the
inherent complexity of evaluating observer performance even in
a three-class classification task, some researchers have suggested
a generally incomplete but more tractable evaluation in terms of
a surface plotting only the three “sensitivities.” More generally,
one can evaluate observer performance with a single sensitivity
or misclassification probability as a function of two linear
combinations of sensitivities or misclassification probabilities.
We analyzed four such formulations including the “sensitivity”
surface. In each case, we applied the Neyman-Pearson criterion
to find the observer which achieves optimal performance with
respect to each given set of “performance description variables”
under consideration. In the unrestricted case, optimization with
respect to the Neyman-Pearson criterion yields the ideal observer,
as does maximization of the observer’s expected utility. Moreover,
during our consideration of the restricted cases, we found that
the two optimization methods do not merely yield the same
observer, but are in fact completely equivalent in a mathematical
sense. Thus, for a wide variety of observers which maximize
performance with respect to a restricted ROC surface in the
Neyman-Pearson sense, that ROC surface can also be shown to
provide a complete description of the observer’s performance in
an expected-utility sense.

Index Terms— ROC analysis, three-class classification, ideal
observer decision rules, Neyman-Pearson criterion, expected
utility maximization

I. I NTRODUCTION

W E are attempting to extend the well-known observer
performance evaluation methodology of receiver op-

erating characteristic (ROC) analysis [1], [2] to classification
tasks with three classes. This could conceivably be of benefit,
for example, in a medical decision-making task in which a
region of a patient image must be characterized as containing
a malignant lesion, a benign lesion, or only normal tissue [3].

Unfortunately, a fully general extension of ROC analysis
to classification tasks with more than two classes has yet
to be developed. It is known that the performance of an
observer in a classification task withN classes (N ≥ 2)
can be completely described by a set ofN2 − N condi-
tional error probabilities [4], [5], and that the performance
of the ideal observer (that which minimizes Bayes risk [4])
is completely characterized by an ROC hypersurface in which
these conditional error probabilities depend on a set ofN2 −
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Command under Grant W81XWH-04-1-0495 (D. C. Edwards, principal
investigator).

∗D. C. Edwards is with the Department of Radiology, the University of
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N − 1 decision criteria [5]. Although analytic expressions
for the ideal observer’s conditional error probabilities given
reasonable models for the underlying observational data have
been worked out in the two-class case [6], this has not yet
been accomplished in a fully general manner for tasks with
three or more classes. Furthermore, we have shown that an
obvious generalization of the area under the ROC curve (AUC)
does not in fact yield a useful performance metric in tasks
with three or more classes [7]. More recently, we showed
that complicated constraining relationships exist among the
decision criteria themselves for the ideal observer [8]. These
constraining relationships appear to imply that it is highly
unlikely that analytical expressions for the conditional error
probabilities in terms of the decision criteria can be developed
which are as simple to interpret as those for the two-class
task [6].

Despite the difficulties just described, the potential ben-
efits to be gained from a practical performance evaluation
methodology for classification tasks with three classes have
motivated a number of research groups to propose such meth-
ods. These practical methods reduce the number of degrees of
freedom used to describe the observer’s performance, either
by implicitly leaving the remaining degrees of freedom out
of the analysis, or by explicitly imposing restrictions on the
form of the observer’s decision rule or on the set of decision
criteria used by the observer. In this work, we are concerned
specifically with the latter case, and we will refer to such a
model as a “restricted” performance evaluation methodology.

Scurfield evaluated an observer which used a specified
decision rule with only two degrees of freedom (in general
a three-class observer can have up to five degrees of freedom)
by plotting a set of six (two-dimensional) surfaces in three-
dimensional ROC spaces [9]. Mossman proposed plotting
the surface formed only from the set of three “sensitivities”
(conditional probabilities of correctly classifying observations)
for an observer with two degrees of freedom, and applied this
method to an observer with a specified decision rule [10].
Chanet al. began with an ideal observer model, and reduced
the number of decision criteria from five to two by imposing
explicit assumptions on the observer’s decision utilities. The
observer’s performance was then plotted as a surface in a
three-dimensional ROC space, the axes of which are the three
conditional probabilities of deciding an observation to be
malignant (this description of performance was also shown
to be complete) [11]. Heet al. investigated a special case
of the ideal observer model which is also a special case of
the decision rule proposed by Scurfield; they showed that due
to the assumptions of their model, performance evaluation
in terms of only the three sensitivities provides a complete
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description of this observer’s performance [12]. Recentlywe
investigated the relationships between each of these proposed
decision rules and the decision rule used by the three-class
ideal observer [13]; that work, however, was limited to theoret-
ical aspects of the decision rules themselves, and did not take
into account the important issue of performance measurement.
The present work attempts to address this issue; it continues
our analysis of the proposed decision strategies described
above, specifically from the point of view of ROC analysis.

A common theme among these remarkably diverse proposed
decision strategies is the idea of an “ROC surface,”i. e., a
surface with two degrees of freedom in a three-dimensional
ROC space. An appealing feature of such a construct is its
visualizability: it can be plotted as readily as any elevation
map, for example, in stark contrast to the fully general
three-class classification task involving a hypersurface with
five degrees of freedom in a six-dimensional ROC space as
mentioned above.

On the other hand, it can be argued that measurement
of three-class classification performance in terms of only
three conditional classification rates may yield an incomplete
description of observer performance; for example, a complete
description of the unrestricted three-class ideal observer’s
performance requires six such conditional classification rates,
as stated above. Acknowledging this possible incompleteness,
we would like to ask whether there is any sense in which
such a restricted performance evaluation method is at least
well-defined. In particular, suppose we elect to measure per-
formance in terms of an ROC surface given by a single linear
combination of either sensitivities or of conditional error rates
as a function of two different linear combinations of other
conditional classification rates. We then ask, is there any
observer decision rule, dependent on only two (rather than five)
decision criteria, for which the specified ROC surface is never
below (when the surface’s dependent variable is a sensitivity)
or never above (when the surface’s dependent variable is a
conditional error rate) the corresponding surface obtained for
any other observer? If so, what form does this decision rule
take?

In attempting to answer this question for the special cases
listed above, as well as for closely related models, we applied
the Neyman-Pearson criterion to find the observer which
achieves optimal performance with respect to each given set
of “performance description variables” (the particular set of
three linear combinations of sensitivities or conditionalerror
rates under consideration). In the unrestricted case, it iswell
known for N = 2 [4], and we showed recently forN >
2 [5], that optimization with respect to the Neyman-Pearson
criterion yields the same observer as does maximization of
the observer’s expected utility (or, equivalently, minimization
of Bayes’s risk): namely, the ideal observer. During our
consideration of the restricted cases, we found that the two
optimization methods do not merely yield the same observer,
but are in fact completely equivalent in a mathematical sense.

The proof of this equivalence, in the unrestricted case, is
given in Sec. II. In Sec. III, we show that the equivalence holds
true even in a “restricted case” such as those just mentioned—
specifically, when a linear constraint is applied to the utilities

used by the ideal observer to make decisions, thereby reducing
the number of performance description variables required to
describe the performance of the resulting observer. We then
analyze four different observer decision strategies proposed
recently in the literature (and known to be special cases of the
three-class ideal observer [13]) in light of this result. (It should
be noted that, although the restricted cases we consider are
all, in fact, special cases which are in some sense “derivable”
from the unrestricted model we considered previously [5],
the derivations in that previous work did not consider the
possibility of introducing any such constraints on the decision
process.) For the reader’s convenience, much of the mathe-
matical detail of this analysis is relegated to corresponding
appendices. Finally, these results are summarized, and our
conclusions presented, in Secs. IV and V.

II. T HE EQUIVALENCE OF THE NEYMAN -PEARSON AND

EXPECTEDUTILITY OPTIMIZATIONS

The expected utility of the decisions made by an observer
in an N -class classification task can be expressed as [5]

E{U} =

N
∑

i=1

N
∑

j=1

Ui|jP (d = πi, t = πj)

=

N
∑

i=1

N
∑

j=1

Ui|jP (d = πi|t = πj)P (t = πj), (1)

where the labelsπ1 throughπN identify the classes to which
observations belong; the numberUi|j is defined as the utility
of deciding an observation belongs to classπi given that it
is actually drawn from classπj ; and the random variables
t and d indicate the true class to which a randomly drawn
observation belongs and the observer’s decision for classifying
that observation, respectively. (We use boldface type to denote
statistically variable quantities.) For notational simplicity, we
will write the conditional classification rateP (d = πi|t = πj)
asPij , and thea priori class membership probabilityP (t =
πi) asP (πi).

For a three-class classification task, the expected utilitycan
be written explicitly as

E{U} = [U1|1P11 + U2|1P21 + U3|1P31]P (π1)

+ [U1|2P12 + U2|2P22 + U3|2P32]P (π2)

+ [U1|3P13 + U2|3P23 + U3|3P33]P (π3). (2)

Note that the nine conditional classification ratesPij appearing
in this expression are not independent; for example, given the
definition of conditional probability, it must be the case that
P11 +P21 +P31 = 1. Thus within any pair of square brackets
in (2), one of the three conditional classification rates canbe
eliminated, leaving an expression which depends in generalon
six conditional classification rates.

It can readily be shown that the observer which maximizes
this expected utility is in fact the ideal observer [4], [5].
(Note that in our previous work, we demonstrated that the
observer which maximizesEt{U(~x, t)|~x} is the ideal ob-
server [5]; this is consistent with the present statement because
E{U} = E~x{Et[U(~x, t)|~x]}, and therefore maximizing the
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inner expectation value at each given value of~x will maximize
E{U}.) The three-class ideal observer makes decisions by
partitioning a likelihood ratio decision variable plane into three
regions with three intersecting lines [4], [5]. The likelihood
ratios can be taken to beLR1 ≡ p(~x|π1)/p(~x|π3) andLR2 ≡
p(~x|π2)/p(~x|π3), ratios of the conditional probability density
functions of the observational data~x taken as functions of that
random observational data. In the notation we advocate [8],the
equations for the three decision boundary lines are

γ121LR1 − γ212LR2 = γ313 − γ323 (3)

γ131LR1 + (γ232 − γ212)LR2 = γ313 (4)

(γ131 − γ121)LR1 + γ232LR2 = γ323, (5)

which we call, respectively, the “1-vs.-2” line, the “1-vs.-3”
line, and the “2-vs.-3” line. Hereγiji ≡ (Ui|i − Uj|i)P (πi);
since the utility of a correct decision can be assumed to be
greater than that of an incorrect decision, theγiji can be
understood to be positive. (Note also that because (3)–(5) can
be multiplied by any positive constant without changing the
resulting decision boundary lines, those lines are determined
by five rather than six parameters, orN2 −N − 1 rather than
N2−N in general [5].) In this notation, the expression in (2)
can be simplified to obtain

E{U} = U1|1P (π1) + U2|2P (π2) + U3|3P (π3)

− γ121P21 − γ131P31

− γ212P12 − γ232P32

− γ313P13 − γ323P23. (6)

An alternative method for defining “optimal performance”
is in terms of the Neyman-Pearson criterion [4], [5]; the tech-
nique of satisfying the Neyman-Pearson criterion is essentially
an application of an integral form of the method of Lagrange
multipliers [14]. As just stated, the behavior of the ideal
observer is governed byN2 −N − 1 parameters, and for the
present discussion we restrict our consideration of non-ideal
observers to those withN2−N−1 degrees of freedom as well.
Without loss of generality, an observer’s ROC hypersurface
can be defined asPN(N−1) taken as a function of the other
N2 − N − 1 conditional error probabilities. (The restriction
just made is then seen to be of little practical consequence:for
an observer with more thanN2 −N − 1 degrees of freedom,
one is free to consider only combinations of parameters such
thatPN(N−1) is minimized for a given set of the independent
variables, reducing the number of parameters toN2 −N − 1;
while for an observer with fewer thanN2−N − 1 degrees of
freedom, it is simply the case thatPN(N−1) is undefined for
particular combinations of the independent variables.)

For the three-class classification task under considera-
tion, the ROC hypersurface is thus given byP32 =
R(P12, P13, P21, P23, P31). It is reasonable to define an “op-
timal observer” as one that achieves the lowest possible value
of P32 for a given set of values ofP12, P13, P21, P23, P31;
this condition is known as the Neyman-Pearson criterion,
and it can be shown that the observer which satisfies this
criterion is in fact the ideal observer [4], [5] —i. e., the same
observer obtained by maximizing the expected utility in (2)or,

equivalently, (6). We will not reproduce the entire derivation
of that result here; it will be sufficient to outline the motivation
for the Neyman-Pearson criterion.

As stated, we seek to minimizeP32, or, equiva-
lently, maximize −P32, at a particular set of values
of P12, P13, P21, P23, P31. Following the notation of Van
Trees [4], we denote those particular values byαij (e. g., α12

is the particular value ofP12 under consideration). We then
construct the function

F ≡ −P32 −
∑

j 6=i

λij(Pij − αij). (7)

(The term fori = 3 andj = 2 is to be understood as excluded
from the sum, here and throughout this section.) IfF can
be maximized over all values of thePij , and if the maximal
value does not depend on theαij , then at the particular set
of independent variables such thatPij = αij , the terms in
the sum (the “constraints”) will vanish; the maximum inF at
that point will correspond simply to a minimum ofP32 at the
particular set of independent variables in question.

Since the factorsλij appearing in front of the constraints
(the so-called Lagrange multipliers) are in any practical sense
arbitrary, we are free to make whatever choice is convenient
(effectively, this is equivalent to choosing a “scale” forF rel-
ative toP32 and the other conditional probabilities). Consider
the change of variables

γjij ≡ γ232λij , (8)

where γ232 is in turn defined as some arbitrary positive
constant (cf. the statement after (5) that the set of six values of
γjij could be reduced to five by multiplying by any convenient
positive constant). The values ofγ232 and the otherγjij are
here assumed to be positive; although theλij are, as just
stated, effectively arbitrary, we will be able to show shortly
that this restriction to positive values does not result in aloss
of generality.

With this substitution, the Neyman-Pearson function can be
rewritten as

γ232F = −γ232P32 −
∑

j 6=i

γjij(Pij − αij)

= E{U} −
∑

Ui|iP (πi) +
∑

j 6=i

γjijαij , (9)

i. e., the expression for expected utility plus constant terms
independent of the observer’s decision rule (which determines
the Pij ). In this form, the fact that maximization of expected
utility and satisfaction of the Neyman-Pearson criterion both
yield the ideal observer is seen to be not merely an elegant
convenience, but a necessary consequence of the mathematical
equivalence of the two methods. It is also worth noting that,
by replacingγ232 with the more generalγ(N−1)N(N−1) and
removing the implicit restrictions oni and j to (1, 2, 3), the
equivalence in (9) is seen to hold for classification tasks with
an arbitrary number of classes, not just three.

We can now also justify the claim just made that the
Lagrange multipliersλij can be restricted to positive values
without loss of generality (assumingγ232 to be an arbitrary
positive constant). In the context of expected utility, a negative
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value ofλij or, equivalently, ofγjij would correspond to an
incorrect decision having a utility greater than that of the
corresponding correct decision. This possibility (equivalent
in a two-class classification task to an ROC operating point
“below the guessing line”) can, at least in the context of the
ideal observer, be ignored as being “perverse.” (A zero value
of γjij corresponds to an incorrect decision having a utility
exactly equal to that of the corresponding correct decision.
Although we choose to ignore this situation in the general
case, a model in which some of theγjij are set to zero without
contradiction is considered in Sec. III-B.)

III. RESTRICTEDROC SURFACES

A. Theoretical Considerations

In the Introduction, it was pointed out that the complexity
of the three-class classification task has so far hindered the
development of a fully general extension of ROC analysis
to this task. As a result, many researchers have proposed
simplified or restricted performance evaluation strategies; a
number of these, also mentioned in the Introduction, involve
the imposition of linear “constraints” on the utilities used by
the ideal observer to make decisions. (In previous work, we
examined the relationship between those proposed decision
rules and the decision rule used by the ideal observer, without
explicit regard to performance evaluation issues [13].) The
practical effect of these constraints, as will be shown in
more detail in the remainder of this section, is to reduce the
number of performance description variables (the sensitivities
or conditional error rates) needed to describe the observer’s
performance. In this section, we will first demonstrate that
the equivalence between expected utility maximization and
optimization through the Neyman-Pearson criterion also holds
when arbitrary linear constraints are placed on the decision
utilities; this result is shown to hold true for classification tasks
with an arbitrary number of classes. We will then illustratethis
equivalence explicitly by considering four proposed restricted
three-class models.

Consider a simple linear constraint on the decision utilities
of the form Ui|j = Uk|l. In the special casei = j = l, we
clearly haveγiki = (Ui|i − Uk|i)P (πi) = 0. Similarly, any
linear constraint on the utilitiesUi|j can be reexpressed as a
linear constraint on theγiji parameters, which we can write
as

γiji =
∑

k 6=l

(k,l)6=(i,j)

vlkγklk, (10)

where thevlk are a set of constants determining the constraint.
Substituting (10) into (6) allows us to write

E~v{U} =
∑

Ui|iP (πi)

− {. . . + γklk(Plk + vlkPji) + . . .}. (11)

(Here the subscript~v on the expectation operator denotes the
restriction imposed on the utilitiesvia the vlk, and not a
random variable over which the expectation is taken.) Note that
γiji no longer appears in the expression for expected utility,
which now depends on a set ofN2−N−1 generalized perfor-
mance description variables (GPDVs) —i. e., the expressions

Plk + vlkPji. In general, of course, these may not have any
obvious practical interpretation in terms of the performance of
the observer (hence the use of the word “generalized”). For
non-negative values ofvlk, however, it is at least the case that
a weighted sum of sensitivities will still behave in some sense
like a sensitivity (higher values for a given observer are better
than lower ones), and a weighted sum of conditional error
rates still behaves like a conditional error rate (lower values
are better than higher ones). This should be regarded as a
practical rather than theoretical consideration, and it isin some
sense an obligation of a proposed restricted method that the
actual GPDVs involved be justifiable (or at least interpretable).
This will be attempted in the remainder of this section during
consideration of the four special cases referred to above.

For the moment, note that if we construct a Neyman-
Pearson functionF~v from the remainingN2−N −1 GPDVs,
analogous to (7), the result, after a suitable selection of the
λlk parameters, will again be a complete equivalence between
F~v and E~v{U}. That is, the expressions will be equal to
within a positive scale factor and an additive term independent
of the observer’s decision rule. It remains only to note that
an arbitrary number of such linear constraints can be further
imposed (up to a total ofN2−N − 1, in order to be left with
at least one GPDV) with equivalence continuing to hold. In
the next four subsections, we consider three-class classification
tasks in which three constraints are imposed on the utilities,
leaving a set of three GPDVs (i. e., an ROC surface with two
degrees of freedom in a three-dimensional ROC space).

Before turning to those special cases, however, it is perhaps
worth summarizing the results of the preceding paragraphs.
Briefly, if one imposes particular constraints on the behavior
of an N -class ideal observer, the resulting expected utility
for that constrained observer will depend on fewer than
N2 − N GPDVs. Description of the constrained observer’s
performance in terms of this reduced number of GPDVs is
therefore complete from the point of view of expected utility.
Furthermore, given the mathematical equivalence ofF~v and
E~v{U} just demonstrated, the performance of the observer
which maximizesF~v is also completely described by the same
reduced set of GPDVs.

B. The Chan et al. Observer

Chanet al.consider a three-class classification task in which
class π1 represents “benign,” classπ2 “normal,” and class
π3 “malignant” observations (e. g., for structures evident in
a medical image) [11]. They simplify the expression in (2) by
restricting all values of utility to lie betweenUmin andUmax;
by setting the “correct decision” utilitiesU1|1, U2|2, andU3|3

to beUmax; the “missed malignancy” utilitiesU1|3 andU2|3 to
beUmin; and the utilities for incorrect decisions not involving
malignanciesU1|2 andU2|1 to beUmax. The remaining “false-
positive” utilities U3|1 andU3|2 are free to vary in the range
[Umin, Umax]. In our notation, this corresponds to imposing the
three constraintsγ121 = 0, γ212 = 0, andγ313 = γ323. (The
remaining conditionγ313 = (Umax − Umin)P (π3) is not an
additional constraint — in the sense of restricting the formof
the observer’s decision rule — but merely determines the scale



5

LR1

LR2

γ313

γ131

γ313

γ232

“π3”

Fig. 1. The decision strategy investigated by Chanet al., which is a special
case of the ideal observer decision strategy. Observationsin the unlabeled
region are decided “notπ3,” i. e., either “π1” or “ π2”.

of the remaining parameters as explained in the text following
(5).)

With these assumptions, the expression for expected utility
is reduced to

E{UChan} = Umax

− γ131P31 − γ232P32

− γ313(P13 + P23)

= Umax − γ313

− γ131P31 − γ232P32 + γ313P33, (12)

sinceP13 + P23 = 1 − P33 (again, note thatγ131, γ232, and
γ313 are dependent on only two free parametersU3|1 and
U3|2). As Chanet al. point out [11], this expression depends
on three rather than six GPDVs, namelyP31, P32, andP33.
These three rates are used to construct the ROC space in which
they analyze the performance of their observer. That observer
in turn is the special case of the ideal observer obtained by
imposing the above constraints on the decision utilitiesUi|j

or, equivalently, on the parametersγjij .
Although we have found it useful to assume the quantities

γjij to be strictly positive, this is not a fundamental require-
ment, and Chanet al. indeed allow some of them (e. g., γ121) to
be zero (consistent with the constraints they place on theUi|j

as described above). They obtain the resulting ideal observer
decision lines

0LR1 − 0LR2 = 0 {“1-vs.-2”} (13)

γ131LR1 + γ232LR2 = γ313 {“1-vs.-3”} (14)

γ131LR1 + γ232LR2 = γ313 {“2-vs.-3”}, (15)

which actually correspond to a single line (as the first is un-
defined and the remaining two are degenerate). This decision
strategy is illustrated in Fig. 1.

In summary, Chanet al. begin with a three-class ideal
observer model, impose particular constraints on the decision

utilities in that model, and then determine, based on those con-
straints, both the resulting form of the special case of the ideal
observer and the conditional classification rates appropriate to
measuring its performance. We now wish to pose a question
from a different point of view: suppose one chooses to measure
arbitrary (i. e., not necessarily ideal) observer performance
only in terms of the conditional classification ratesP33, P31,
and P32, ignoring the other rates. For any observer, we can
construct an ROC surface withP33 as a function ofP31 and
P32. (For an observer with more than two degrees of freedom
in its decision strategy, one can simply define the surface tobe
the maximum value ofP33 achievable at any given(P31, P32)
pair.) What observer, if any, will achieve optimal performance
with respect to this surface?

We seek to maximizeP33 at a particular point(P31 =
α31, P32 = α32) in the domain of the given ROC space.
Another way of stating this is to considerP33, P31, and
P32 as functionals of the observer’s decision rule; we seek
to maximizeP33 subject to the constraintsP31 = α31 and
P32 = α32. To find this maximum, we define a function

FChan≡ P33 − λ31(P31 − α31)− λ32(P32 − α32), (16)

whereλ31 andλ32 are free parameters (the so-called Lagrange
multipliers). Note that maximizingFChan at the particular
point (P31 = α31, P32 = α32) is equivalent to maximizing
P33 at that point; if the maxima for arbitrary points(P31, P32)
are achieved by a single decision rule independent ofα31 and
α32, the resulting surface will be the desired optimal surface.

The functional in (16) is maximized in App. A. The bound-
ary lines which partition the(LR1,LR2) decision variable
plane into the regionsZ1, Z2, andZ3 are found to be

0LR1 − 0LR2 = 0 {“1-vs.-2”} (17)

λ31LR1 + λ32LR2 = 1 {“1-vs.-3”} (18)

λ31LR1 + λ32LR2 = 1 {“2-vs.-3”}. (19)

If we require λ31 and λ32 to be positive, and then define
the quantitiesγ131 ≡ γ313λ31 and γ232 ≡ γ313λ32 for
a positive constantγ313, the resulting decision strategy is
found to be identical to that stated in (13)–(15). The special
case of the ideal observer proposed by Chanet al., whose
performance depends only on the conditional classification
rates P33, P31, and P32 by (12), is indeed the observer
which obtains optimal performance with respect to this set
of conditional classification rates. By the argument at the end
of Sec. III-A, this description of the constrained observer’s
performance is complete.

C. The He et al. Observer

He et al. also begin with a three-class ideal observer model
and thus with the expression for expected utility given in (2);
the classification task of interest to them is to distinguish
normal, infarcted, and ischemic tissue based on myocardial
perfusion SPECT [12]. They simplify this expression by
requiring that the two possible incorrect classifications of
observations actually from a given class be equal. That is,
U2|1 = U3|1, U1|2 = U3|2, and U1|3 = U2|3. These can
immediately be expressed as the (linear) constraintsγ121 =
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LR1

LR2

γ313

γ121

γ313

γ212 “π1”

“π2”

“π3”

Fig. 2. The decision strategy investigated by Heet al., which is a special case
of the ideal observer decision strategy, and which can also be shown to be
a special case of the Scurfield observer in which the decisionvariables used
are the logarithms of the likelihood ratios(LR1,LR2) of the observational
data.

γ131, γ212 = γ232, and γ313 = γ323. The expression for
expected utility is thereby reduced, in our notation, to

E{UHe} = U1|1P (π1) + U2|2P (π2) + U3|3P (π3)

− γ121(P21 + P31)

− γ212(P12 + P32)

− γ313(P12 + P32)

= U1|1P (π1) + U2|2P (π2) + U3|3P (π3)

− (γ121 + γ212 + γ313)

+ γ121P11 + γ212P22 + γ313P33. (20)

As He et al. point out [12], this expression depends on only
the three “sensitivities”P11, P22, and P33, rather than six
GPDVs. The three sensitivities are used to construct the ROC
space (equivalent to that proposed by Mossman [10]) in which
they analyze the performance of their observer. That observer
in turn is the special case of the ideal observer obtained by
imposing the above constraints on the decision utilitiesUi|j

or, equivalently, on the parametersγjij .
Applying the stated constraints on the utilities to the ideal

observer decision boundary lines given in (3)–(5) yields

γ121LR1 − γ212LR2 = 0 (21)

γ121LR1 = γ313 (22)

γ212LR2 = γ313. (23)

This decision strategy is illustrated in Fig. 2. We have recently
shown [13] that this decision strategy is a special case of that
proposed by Scurfield [9] when the decision variables used
by the Scurfield observer are the logarithms of the likelihood
ratios of the observational data.

We now consider evaluating the performance of an arbi-
trary observer in the ROC space constructed only from the
observer’s sensitivities (i. e., P11, P22, andP33). Without loss

of generality, we can define such an observer’s ROC surface
as P33 considered as a function ofP11 and P22; to find the
optimal observer with respect to this restricted performance
evaluation method, we apply the Neyman-Pearson criterion to
maximizeP33 subject to the constraints(P11 = α11, P22 =
α22). We define the function

FHe ≡ P33 + λ11(P11 − α11) + λ22(P22 − α22), (24)

whereλ11 andλ22 are again the Lagrange multipliers.
The functional in (24) is maximized in App. B. The bound-

ary lines which partition the(LR1,LR2) decision variable
plane into the regionsZ1, Z2, andZ3 are found to be

λ11LR1 − λ22LR2 = 0 {“1-vs.-2”} (25)

λ11LR1 = 1 {“1-vs.-3”} (26)

λ22LR2 = 1 {“2-vs.-3”}. (27)

If we require λ11 and λ22 to be positive, and define the
quantitiesγ121 ≡ γ313λ11 and γ212 ≡ γ313λ22 for some
arbitrary positive constantγ313, then the resulting decision
strategy is found to be identical to that stated in (21)–(23). The
special case of the ideal observer proposed by Heet al., whose
performance depends only on the conditional classification
rates P11, P22, and P33 by (20), is indeed the observer
which obtains optimal performance with respect to this set
of conditional classification rates. By the argument at the end
of Sec. III-A, this description of the constrained observer’s
performance is complete.

D. The Scurfield Observer (Likelihood Ratio)

In the preceding two sections, we considered decision strate-
gies that have been proposed by other researchers as special
cases of the three-class ideal observer decision strategy.That
is, particular constraints were explicitly imposed in the work
cited on the decision utilities used by the ideal observer. The
remaining two decision strategies we consider in the present
work are special cases of a decision strategy proposed by
Scurfield [9] which was not claimed to be generally related to
the ideal observer; specifically, Scurfield specified the decision
boundary lines used by the observer, but made no assumptions
concerning the observer’s two decision variables.

We showed recently [13] that if particular forms of the
observer’s decision variables related to the likelihood ratios
of the observational data are chosen, then the resulting de-
cision strategies can be shown to be special cases of the
ideal observer decision strategy. One such special case is the
observer analyzed by Heet al. [12], discussed in Sec. III-C,
in which the decision variables used by the Scurfield observer
are the logarithms of the likelihood ratios. Two other such
special cases are the Scurfield observer with the likelihood
ratios themselves as decision variables, which we considerin
this section; and that with thea posteriori class membership
probabilities used as decision variables, considered in Sec. III-
E. A minor difference from the preceding two sections is
that we must determine the implicit constraints on the ideal
observer’s utilities from the known form of the decision rule,
rather than the other way around.
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LR1

LR2

γ313

γ121

γ323

γ121 “π1”

“π2”
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Fig. 3. A special case of the decision strategy investigatedby Scurfield, in
which the decision variables used are the likelihood ratios(LR1,LR2) of
the observational data.

The general Scurfield observer makes decisions by parti-
tioning a decision variable plane(y1,y2) into three regions
via the decision boundary lines

y1 − y2 = γ1 − γ2 (28)

y1 = γ1 (29)

y2 = γ2, (30)

whereγ1 andγ2 are parameters upon which the observer’s per-
formance depends (roughly equivalent to the decision criterion
of a two-class classifier) [9]. When the decision variables are
themselves the likelihood ratios(LR1,LR2), this becomes in
our notation

γ121LR1 − γ121LR2 = γ313 − γ323 (31)

γ121LR1 = γ313 (32)

γ121LR2 = γ323. (33)

(Compare (28)–(30) with (3)–(5), and note that in order for
the “1-vs.-2” line to have unit slope, it must be the case that
γ121 = γ212. Alternatively, after making the assignmentsy1 ≡
LR1, y2 ≡ LR2 in (28)–(30), one is free to multiply all three
equations by a postive constantγ121.) This decision strategy
is illustrated in Fig. 3.

The relationsγ121 = γ131 and γ212 = γ232 evident from
the above equations immediately give the constraints on the
decision utilitiesU2|1 = U3|1 and U1|2 = U3|2. Furthermore,
the constraintγ121 = γ212 implies (U1|1 − U2|1)P (π1) =
(U2|2 − U1|2)P (π2). (Recall from Sec. II thatγiji ≡ (Ui|i −
Uj|i)P (πi).) This allows us to simplify the expression for
expected utility in (2) to yield

E{UScfd:LR} = U1|1P (π1) + U2|2P (π2) + U3|3P (π3)

− γ121(P21 + P31)− γ121(P12 + P32)

− γ313P13 − γ323P23

= U1|1P (π1) + U2|2P (π2) + U3|3P (π3)

− 2γ121 + γ121(P11 + P22)

− γ313P13 − γ323P23. (34)

This expression for the observer’s expected utility depends
on only three GPDVs:P13 and P23, which are just the
misclassification rates for observations actually drawn from
classπ3; andP11 + P22, which may be regarded as the “total
sensitivity” for observations actually drawn from classesπ1

andπ2 (ignoring thea priori rates for such observations).
We now consider evaluating the performance of an arbitrary

observer in an ROC-like space constructed from the quantities
P11 +P22, P13, andP23. We will define the ROC-like surface
used to evaluate observer performance as the first quantity
considered as a function of the two misclassification rates.To
find the optimal observer with respect to this restricted per-
formance evaluation method, we apply the Neyman-Pearson
criterion to maximizeP11 + P22 subject to the constraints
(P13 = α13, P23 = α23). We define the function

FScfd:LR ≡ P11 + P22 − λ13(P13 − α13)

− λ23(P23 − α23), (35)

whereλ13 andλ23 are the Lagrange multipliers.
The functional in (35) is maximized in App. C. The bound-

ary lines which partition the(LR1,LR2) decision variable
plane into the regionsZ1, Z2, andZ3 are found to be

LR1 − LR2 = λ13 − λ23 {“1-vs.-2”} (36)

LR1 = λ13 {“1-vs.-3”} (37)

LR2 = λ23 {“2-vs.-3”}. (38)

If we require λ13 and λ23 to be positive, and define the
quantitiesγ313 ≡ γ121λ13 and γ323 ≡ γ121λ23 for some
arbitrary positive constantγ121, then the resulting decision
strategy is found to be identical to that stated in (31)–(33). This
special case of the observer proposed by Scurfield, which we
have shown to be a special case of the ideal observer [13], has
a performance that depends only on the GPDVsP11+P22, P13,
and P23 by (34). This is indeed the observer which obtains
optimal performance with respect to this set of quantities
related to the conditional classification rates. By the argument
at the end of Sec. III-A, this description of the constrained
observer’s performance is complete.

E. The Scurfield Observer (a posteriori Class Probability)

Equations (28)–(30) in Sec. III-D give the equations for
the decision boundary lines of the general Scurfield observer.
If we now use two of thea posteriori class membership
probabilities, such asP (π1|~x) and P (π2|~x), as the decision
variables, the equations become

P (π1|~x)− P (π2|~x) = γ1 − γ2 (39)

P (π1|~x) = γ1 (40)

P (π2|~x) = γ2, (41)

with 0 ≤ γ1 ≤ 1 and 0 ≤ γ2 ≤ 1. (Note thatP (π3|~x) =
1 − P (π1|~x) − P (π2|~x), meaning this third probability is
not needed as an independent decision variable; the particular
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P (π1|~x)

P (π2|~x)

γ1

γ2

“π1”

“π2”

“π3”

Fig. 4. A special case of the decision strategy investigatedby Scurfield,
in which the decision variables used are thea posteriori class membership
probabilitiesP (π1|~x) andP (π2|~x) of the observational data.

choice of which two probabilities to use is of course arbitrary.)
This decision strategy, which we have shown recently to be
a special case of the ideal observer decision strategy [13],is
illustrated in Fig. 4.

We can reexpress the above equations in terms of likelihood
ratios by exploiting the relation

P (πi|~x) =
p(~x|πi)P (πi)

p(~x)

=
kiLRi

1 + k1LR1 + k2LR2

, (42)

where the second equation is obtained by dividing the numer-
ator and denominator of the first byp(~x|π3)P (π3), and where
ki ≡ P (πi)/P (π3). The equations for the decision boundary
lines become

P (π1)

P (π3)
LR1 −

P (π2)

P (π3)
LR2 = (γ1 − γ2)

(

1 +
P (π1)

P (π3)
LR1

+
P (π2)

P (π3)
LR2

)

(43)

P (π1)

P (π3)
LR1 = γ1

(

1 +
P (π1)

P (π3)
LR1

+
P (π2)

P (π3)
LR2

)

(44)

P (π2)

P (π3)
LR2 = γ2

(

1 +
P (π1)

P (π3)
LR1

+
P (π2)

P (π3)
LR2

)

, (45)

which can in turn be simplified to yield

[1− (γ1 − γ2)]P (π1)LR1

−[1 + (γ1 − γ2)]P (π2)LR2

= (γ1 − γ2)P (π3) (46)

(1 − γ1)P (π1)LR1 − γ1P (π2)LR2 = γ1P (π3) (47)

−γ2P (π1)LR1 + (1 − γ2)P (π2)LR2 = γ2P (π3).(48)

Although the above equations for the decision boundary
lines are much more complicated than those of the previous

three sections, we can still relate the parametersγ1 andγ2 to
the decision rule parameters of (3)–(5) to obtain constraints
on them and, consequently, on the utilitiesUi|j . For example,
comparison of (47) with (4) gives

γ232 − γ212 =
−P (π2)

P (π3)
γ313, (49)

which can also be expressed in terms of the utilities as
−(U1|2 − U3|2) = U3|3 − U1|3. Similarly, comparison of (48)
and (5) gives

γ131 − γ121 =
−P (π1)

P (π3)
γ323, (50)

which can be expressed in terms of the utilities as−(U2|1 −
U3|1) = U3|3 −U2|3. Finally, we add the first two coefficients
of (46) and then compare with (3) to obtain

γ121

P (π1)
−

γ212

P (π2)
=
−2(γ313 − γ323)

P (π3)
, (51)

which can be expressed in terms of the utilities as(U1|1 −
U2|1) − (U2|2 − U1|2) = −2(U2|3 − U1|3). Note that the
remaining terms in (46)–(48) involvingγ1 or γ2 are simply
differences of terms already considered, and would thus yield
no further constraints on the utilities.

We can now impose constraints (49), (50), and (51) on
the general expression (2) for expected utility to obtain the
expected utility for this observer:

E{UScfd:AP} = U1|1P (π1) + U2|2P (π2) + U3|3P (π3)

− γ121P21 −

[

P (π2)

P (π1)
γ121

+
2P (π2)

P (π3)
(γ313 − γ323)

]

P12

−

[

γ121 −
P (π1)

P (π3)
γ323

]

P31

−

[

P (π2)

P (π1)
γ121 +

P (π2)

P (π3)
γ313

−
2P (π2)

P (π3)
γ323

]

P32

− γ313P13 − γ323P23

= U1|1P (π1) + U2|2P (π2) + U3|3P (π3)

−
γ121

P (π1)
[P (π1)(P21 + P31)

+ P (π2)(P12 + P32)]

−
γ313

P (π3)
[2P (π2)P12 + P (π2)P32

+ P (π3)P13]

−
γ323

P (π3)
[−2P (π2)(P12 + P32)

− P (π1)P31 + P (π3)P23] . (52)

This can in turn be simplified slightly using the definition of
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conditional probability to yield

E{UScfd:AP} = U1|1P (π1) + U2|2P (π2) + U3|3P (π3)

−
P (π1) + P (π2)

P (π1)
γ121 +

2P (π2)

P (π3)
γ323

+
γ121

P (π1)
[P (π1)P11 + P (π2)P22]

−
γ313

P (π3)
[2P (π2)P12 + P (π2)P32

+ P (π3)P13]

−
γ323

P (π3)
[2P (π2)P22 − P (π1)P31

+ P (π3)P23] . (53)

As was the case for the decision strategies of the preceding
three sections, the expected utility of this observer (and thus its
performance, as it too is a special case of the ideal observer)
depends on only three GPDVs, namely the quantities in square
brackets in (53).

The first GPDV, being a weighted sum of “sensitivities” with
positive weights, is immediately seen to be quite suitable for
the dependent variable of an ROC surface — a higher value
of this quantity is clearly preferable to a lower one. (Indeed,
P (π1)P11 + P (π2)P22 has an intuitive interpretation as the
probability of a randomly drawn observation being both (i)
from either classπ1 or π2 and also (ii) correctly classified
as such. Compare the corresponding quantityP11 + P22 from
Sec. III-D, which is technically not even a probability.) The
other two GPDVs in (53) discourage any such straightforward
interpretation, but this is perhaps to be expected: the pleasantly
symmetric form of the Scurfield decision rule of (28)–(30) in
this case holds in the(P (π1|~x), P (π2|~x)) decision variable
plane; due to the complexity of the transformation in (42),
this symmetry will be lost in the likelihood ratio decision
variable plane, and the expression for expected utility will be
correspondingly opaque. (Despite this complexity, it is worth
emphasizing that the Scurfield decision rule, for arbitrary
choice of the decision variables, has the advantage that it
can be proven rigorously that the volume under any of the
conventional ROC surfaces proposed by Scurfield is equal to
the probability of a particular outcome of a three-alternative
forced choice experiment [9]. Although it is possible that a
different choice of decisionrule would yield a more “intuitive”
triple of GPDVs than that given in (53), we have considered
it worthwhile to investigate the consequences of the Scurfield
decsion rule for three very natural choices of decisionvari-
able — namely, the log-likelihood ratios investigated by He;
the likelihood ratios themselves; and thea posteriori class
membership probabilities.)

In any case, we now consider evaluating the performance of
an arbitrary observer in an ROC-like space constructed from
the quantitiesP (π1)P11+P (π2)P22, 2P (π2)P12+P (π2)P32+
P (π3)P13, and 2P (π2)P22 − P (π1)P31 + P (π3)P23. We
will define the ROC-like surface used to evaluate observer
performance as the first quantity considered as a function
of the other two. To find the optimal observer with re-
spect to this restricted performance evaluation method, we
apply the Neyman-Pearson criterion to maximizeP (π1)P11 +

P (π2)P22 subject to the constraints2P (π2)P12 +P (π2)P32 +
P (π3)P13 = α1 and 2P (π2)P22 − P (π1)P31 + P (π3)P23 =
α2. We define the function

FScfd:AP ≡ P (π1)P11 + P (π2)P22

− λ1[2P (π2)P12 + P (π2)P32

+ P (π3)P13 − α1]

− λ2[2P (π2)P22 − P (π1)P31

+ P (π3)P23 − α2], (54)

whereλ1 andλ2 are the Lagrange multipliers.
The functional in (54) is maximized in App. D. The bound-

ary lines which partition the(LR1,LR2) decision variable
plane into the regionsZ1, Z2, andZ3 are found to be

P (π1)

P (π3)
LR1 − (2λ1 − 2λ2 + 1)

P (π2)

P (π3)
LR2

= (λ1 − λ2) (55)

(1 − λ2)
P (π1)

P (π3)
LR1 − λ1

P (π2)

P (π3)
LR2 = λ1 (56)

−λ2

P (π1)

P (π3)
LR1 + (λ1 − 2λ2 + 1)

P (π2)

P (π3)
LR2 = λ2 (57)

If we define the quantitiesγ313 ≡ γ121[P (π3)/P (π1)]λ1 and
γ323 ≡ γ121[P (π3)/P (π1)]λ2, and further requireλ1 andλ2

to be positive, then the resulting decision strategy is found to
be

γ121LR1 −

[

2γ313

P (π3)
−

2γ323

P (π3)
+

γ121

P (π1)

]

P (π2)LR2

= γ313 − γ323 (58)
[

γ121 −
P (π1)

P (π3)
γ323

]

LR1 −
P (π2)

P (π3)
γ313LR2

= γ313 (59)

−
P (π1)

P (π3)
γ323LR1 +

[

γ313

P (π3)
−

2γ323

P (π3)

+
γ121

P (π1)

]

P (π2)LR2

= γ323. (60)

This is in fact the ideal observer subject to the constraints
in (49)–(51); that is, the resulting observer is identical to that
stated in (39)–(41). This special case of the observer proposed
by Scurfield, which we have shown to be a special case of the
ideal observer [13], has a performance that depends only on
the quantitiesP (π1)P11+P (π2)P22, 2P (π2)P12+P (π2)P32+
P (π3)P13, and2P (π2)P22 − P (π1)P31 + P (π3)P23 by (53).
The observer described above is indeed that which obtains
optimal performance with respect to this set of quantities
related to the conditional classification rates. By the argument
at the end of Sec. III-A, this description of the constrained
observer’s performance is complete.

IV. D ISCUSSION

Given the rapid increase in complexity of the utility con-
straints and performance evaluation criteria as one proceeds
from Secs. III-B to III-E, it is quite possible for the main point
of the above analyses to become obscured. That main point is
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that, for each of a variety of constrained special cases of the
three-class ideal observer, the performance of that observer
is completely describable, in an expected-utility sense, by
only two decision criteria and three quantities related to
conditional classification rates. This represents a considerable
simplification from the general model, which is known to
involve five decision criteria and six conditional classification
rates. Furthermore, given the result derived in Sec. III-A,this
conclusion can be seen to apply to any set of GPDVs obtained
from linear constraints on the ideal observer’s decision utili-
ties, and not merely the four special cases considered explicitly
here. Put another way, it is relatively straightforward to see that
if linear restrictions (i. e., constraints) of the form described in
Sec. III-A are placed on the ideal observer decision rule, the
performance of the resulting observer will be describable with
less than five degrees of freedom (or, in general, less than
N2 −N − 1 in an N -class classification task). Moreover, we
have shown the converse to be true as well for a wide variety
of restricted performance evaluation models: if one chooses
to describe observer performance with fewer than six (or, in
general, fewer thanN2 −N ) GPDVs that are linearly related
to the conditional classification probabilities, then the observer
which optimizes performance with respect to that description
is a restricted form of the ideal observer (where the restrictions
correspond to linear constraints on the utilities). Again,this
follows directly from the proof in Sec. III-A that the expected
utility and Neyman-Pearson optimization methods are in fact
mathematically equivalent.

It should be immediately acknowledged that such simplified
models may ultimately prove to be of limited practical impor-
tance. Given an observer known to closely approximate the
behavior of the unrestricted ideal observer, or indeed given
a human observer, it is difficult to conceive of a pragmatic
way to externally constrain the observer’s decision utilities
to match a particular model such as one of those described
above. On the other hand, an algorithmic observer (such as
an implementation of a computerized scheme for computer-
aided diagnosis) might readily allow such constraints on its
decision rules to be implemented; however, the assumption
that the probability density functions of the decisionvariables
generated by the scheme do indeed follow those required
by the ideal observer model would generally be unverifiable,
given the limited amount of data typically available for training
and testing such a scheme.

V. CONCLUSIONS

Despite the limitations of constrained or simplified perfor-
mance evaluation models stated in the preceding section, it
remains an acknowledged fact that a fully general extension
of ROC analysis to classification tasks with three or more
classes has yet to be developed. Although the investigation
of constrained and therefore tractable observer performance
evaluation models should not be considered an end unto itself,
a thorough understanding of such models is almost certain to
prove necessary for the development of more general observer
models. We believe that demonstrating particular constrained
ideal observer models to be complete as well as tractable will
be a crucial step toward this understanding.

APPENDIX A
THE CHAN ET AL . OBSERVER

As stated in the material leading up to (3)–(5), observer
decisions here are assumed to be made based on statistically
variable observational data. Explicitly,

Pij ≡

∫

Zi

p(~x|πj) dm~x, (61)

whereZi is the region for which observations~x (of dimension
m) are decided to belong to the class labeledπi (1 ≤ i ≤
3). The expression forFChan in (16) can then be written as
follows:

FChan = 1− P13 − P23 − λ31P31 + λ31α31 − λ32P32

+ λ32α32

= 1 + λ31α31 + λ32α32 − {P13 + P23 + λ31P31

+ λ32P32}

= 1 + λ31α31 + λ32α32 −

{
∫

Z1

p(~x|π3) dm~x

+

∫

Z2

p(~x|π3) dm~x

+

∫

Z3

[λ31p(~x|π1) + λ32p(~x|π2)] dm~x

}

. (62)

FChanis maximized when the quantity in braces is minimized.
This quantity, in turn, can be minimized by assigning a given
~x to the regionZi such that theith integrand (from among
the integrals in braces in (62)) is minimal. (Situations in which
two or more of the integrands yield the same minimal value
for a given ~x can be decided in an arbitrary but consistent
fashion.)

That is,

decideπ1 iff p(~x|π3) < p(~x|π3)

and p(~x|π3) < λ31p(~x|π1) + λ32p(~x|π2) (63)

decideπ2 iff p(~x|π3) ≤ p(~x|π3)

and p(~x|π3) < λ31p(~x|π1) + λ32p(~x|π2) (64)

decideπ3 iff p(~x|π3) ≥ λ31p(~x|π1) + λ32p(~x|π2)

and p(~x|π3) ≥ λ31p(~x|π1) + λ32p(~x|π2).(65)

We can divide these relations byp(~x|π3) to obtain

decideπ1 iff 0LR1 − 0LR2 > 0

and λ31LR1 + λ32LR2 > 1 (66)

decideπ2 iff 0LR1 − 0LR2 ≤ 0

and λ31LR1 + λ32LR2 > 1 (67)

decideπ3 iff λ31LR1 + λ32LR2 ≤ 1

and λ31LR1 + λ32LR2 ≤ 1. (68)

(We assume without loss of generality thatp(~x|π3) > 0,
because the task reduces to a two-class problem for values of~x
such thatp(~x|π3) = 0.) The corresponding decision boundary
lines are given in (17)–(19).
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APPENDIX B
THE HE ET AL. OBSERVER

Using (61), the expression forFHe in (24) can be expressed
as

FHe = 1− P13 − P23 + λ11(1− P21 − P31)− λ11α11

+ λ22(1− P12 − P32)− λ22α22

= 1− λ11α11 − λ22α22 − {P13 + P23

+ λ11(P21 + P31) + λ22(P12 + P32)}

= 1− λ11α11 − λ22α22

−

{
∫

Z1

[λ22p(~x|π2) + p(~x|π3)] dm~x

+

∫

Z2

[λ11p(~x|π1) + p(~x|π3)] dm~x

+

∫

Z3

[λ11p(~x|π1) + λ22p(~x|π2)] dm~x

}

. (69)

FHe is maximized when the quantity in braces is minimized.
This quantity, in turn, can be minimized by assigning a given
~x to the regionZi such that theith integrand (from among
the integrals in braces in (69)) is minimal. (Situations in which
two or more of the integrands yield the same minimal value
for a given~x can be decided in an arbitrary but consistent
fashion.)

That is,

decideπ1 iff λ22p(~x|π2) < λ11p(~x|π1)

and p(~x|π3) < λ11p(~x|π1) (70)

decideπ2 iff λ11p(~x|π1) ≤ λ22p(~x|π2)

and p(~x|π3) < λ22p(~x|π2) (71)

decideπ3 iff λ11p(~x|π1) ≤ p(~x|π3)

and λ22p(~x|π2) ≤ p(~x|π3). (72)

We can divide these relations byp(~x|π3) to obtain

decideπ1 iff λ11LR1 − λ22LR2 > 0

and λ11LR1 > 1 (73)

decideπ2 iff λ11LR1 − λ22LR2 ≤ 0

and λ22LR2 > 1 (74)

decideπ3 iff λ11LR1 ≤ 1

and λ22LR2 ≤ 1. (75)

The corresponding decision boundary lines are given in (25)–
(27).

APPENDIX C
THE SCURFIELD OBSERVER(L IKELIHOOD RATIO)

Using (61), the expression forFScfd:LR in (35) can be
written as

FScfd:LR = 1− P21 − P31 + 1− P12 − P32 − λ13P13

+ λ13α13 − λ23P23 + λ23α23

= 2 + λ13α13 + λ23α23 − {P21 + P31 + P12

+ P32 + λ13P13 + λ23P23}

= 2 + λ13α13 + λ23α23

−

{
∫

Z1

[p(~x|π2) + λ13p(~x|π3)] dm~x

+

∫

Z2

[p(~x|π1) + λ23p(~x|π3)] dm~x

+

∫

Z3

[p(~x|π1) + p(~x|π2)] dm~x

}

. (76)

FScfd:LR is maximized when the quantity in braces is mini-
mized. This quantity, in turn, can be minimized by assigning
a given~x to the regionZi such that theith integrand (from
among the integrals in braces in (76)) is minimal. (Situations
in which two or more of the integrands yield the same minimal
value for a given~x can be decided in an arbitrary but consistent
fashion.)

That is,

decideπ1 iff

p(~x|π2) + λ13p(~x|π3) < p(~x|π1) + λ23p(~x|π3)

and λ13p(~x|π3) < p(~x|π1) (77)

decideπ2 iff

p(~x|π1) + λ23p(~x|π3) ≤ p(~x|π2) + λ13p(~x|π3)

and λ23p(~x|π3) < p(~x|π2) (78)

decideπ3 iff

p(~x|π1) ≤ λ13p(~x|π3)

and p(~x|π2) ≤ λ23p(~x|π3). (79)

We can divide these relations byp(~x|π3) to obtain

decideπ1 iff LR1 − LR2 > λ13 − λ23

and LR1 > λ13 (80)

decideπ2 iff LR1 − LR2 ≤ λ13 − λ23

and LR2 > λ23 (81)

decideπ3 iff LR1 ≤ λ13

and LR2 ≤ λ23. (82)

The corresponding decision boundary lines are given in (36)–
(38).

APPENDIX D
THE SCURFIELD OBSERVER(A POSTERIORICLASS

PROBABILITY )

Using (61), the expression forFScfd:AP in (54) can be
written as

FScfd:AP= λ1α1 + λ2α2

+ P (π1)

∫

Z1

p(~x|π1) dm~x + P (π2)

∫

Z2

p(~x|π2) dm~x

− λ1

[

2P (π2)

∫

Z1

p(~x|π2) dm~x

+ P (π2)

∫

Z3

p(~x|π2) dm~x + P (π3)

∫

Z1

p(~x|π3) dm~x

]

− λ2

[

2P (π2)

∫

Z2

p(~x|π2) dm~x

− P (π1)

∫

Z3

p(~x|π1) dm~x
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+ P (π3)

∫

Z2

p(~x|π3) dm~x

]

. (83)

Collecting terms with given domains of integration yields

FScfd:AP= λ1α1 + λ2α2

+

∫

Z1

[P (π1)p(~x|π1)− 2λ1P (π2)p(~x|π2)

− λ1P (π3)p(~x|π3)] dm~x

+

∫

Z2

[P (π2)p(~x|π2)− 2λ2P (π2)p(~x|π2)

− λ2P (π3)p(~x|π3)] dm~x

+

∫

Z3

[−λ1P (π2)p(~x|π2)

+ λ2P (π1)p(~x|π1)] dm~x. (84)

FScfd:AP can be maximized by assigning a given~x to the
regionZi such that the integrand overZi in (84) is maximal.
(Situations in which two or more of the integrands yield the
same maximal value for a given~x can be decided in an
arbitrary but consistent fashion.)

That is,

decideπ1 iff

P (π1)p(~x|π1)− 2λ1P (π2)p(~x|π2)− λ1P (π3)p(~x|π3)

>P (π2)p(~x|π2)− 2λ2P (π2)p(~x|π2)− λ2P (π3)p(~x|π3)

and P (π1)p(~x|π1)− 2λ1P (π2)p(~x|π2)− λ1P (π3)p(~x|π3)

> −λ1P (π2)p(~x|π2) + λ2P (π1)p(~x|π1) (85)

decideπ2 iff

P (π2)p(~x|π2)− 2λ2P (π2)p(~x|π2)− λ2P (π3)p(~x|π3)

≥P (π1)p(~x|π1)− 2λ1P (π2)p(~x|π2)− λ1P (π3)p(~x|π3)

and P (π2)p(~x|π2)− 2λ2P (π2)p(~x|π2)− λ2P (π3)p(~x|π3)

> − λ1P (π2)p(~x|π2) + λ2P (π1)p(~x|π1) (86)

decideπ3 iff

P (π1)p(~x|π1)− 2λ1P (π2)p(~x|π3)− λ1P (π3)p(~x|π3)

≤ − λ1P (π2)p(~x|π2) + λ2P (π1)p(~x|π1)

and P (π2)p(~x|π2)− 2λ2P (π2)p(~x|π2)− λ2P (π3)p(~x|π3)

≤ − λ1P (π2)p(~x|π2) + λ2P (π1)p(~x|π1). (87)

We can divide these relations byp(~x|π3) and rearrange terms
to obtain

decideπ1 iff P (π1)LR1 − (2λ1 − 2λ2 + 1)P (π2)LR2

> (λ1 − λ2)P (π3)

and (1− λ2)P (π1)LR1 − λ1P (π2)LR2

> λ1P (π3) (88)

decideπ2 iff P (π1)LR1 − (2λ1 − 2λ2 + 1)P (π2)LR2

≤ (λ1 − λ2)P (π3)

and −λ2P (π1)LR1 + (λ1 − 2λ2 + 1)P (π2)LR2

> λ2P (π3) (89)

decideπ3 iff (1− λ2)P (π1)LR1 − λ1P (π2)LR2

≤ λ1P (π3)

and −λ2P (π1)LR1 + (λ1 − 2λ2 + 1)P (π2)LR2

≤ λ2P (π3). (90)

The corresponding decision boundary lines are given in (55)–
(57).
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ABSTRACT

We have shown previously that an obvious generalization of the area under an ROC curve (AUC) cannot serve
as a useful performance metric in classification tasks with more than two classes. We define a new performance
metric, grounded in the concept of expected utility familiar from ideal observer decision theory, but which
should not suffer from the issues of dimensionality and degeneracy inherent in the hypervolume under the ROC
hypersurface in tasks with more than two classes. In the present work, we compare this performance metric
with the traditional AUC metric in a variety of two-class tasks. Our numerical studies suggest that the behavior
of the proposed performance metric is consistent with that of the AUC performance metric in a wide range of
two-class classification tasks, while analytical investigation of three-class “near-guessing” observers supports our
claim that the proposed performance metric is well-defined and positive in the limit as the observer’s performance
approaches that of the guessing observer.

Keywords: ROC methodology, expected utility, three-class classification

1. INTRODUCTION

We are attempting to extend the well-known observer performance evaluation methodology of receiver operating
characteristic (ROC) analysis1, 2 to classification tasks with three or more classes. This could conceivably be of
benefit, for example, in a medical decision-making task in which a region of a patient image must be characterized
as containing a malignant lesion, a benign lesion, or only normal tissue.3

Unfortunately, a fully general but tractable extension of ROC analysis to tasks with more than two classes
has yet to be developed. It is known that the performance of an observer in a classification task with N
classes (N ≥ 2) can be completely described by a set of N2 −N conditional error probabilities,4, 5 and that the
performance of the ideal observer (that which minimizes Bayes risk4) is completely characterized by an ROC
hypersurface in which these conditional error probabilities depend on a set of N2 − N − 1 decision criteria.5

Although analytic expressions for the ideal observer’s conditional error probabilities given reasonable models for
the underlying observational date have been worked out in the two-class case,6 this has not yet been accomplished
in a fully general manner for tasks with three or more classes.

Furthermore, we have shown that an obvious generalization of the area under the ROC curve (AUC) does not
in fact yield a useful performance metric in tasks with three or more classes.7 In the formulation we advocate,
the set of N2−N conditional error probabilities serve as the axes of the observer’s ROC space. This is equivalent
to plotting a two-class observer’s false-negative fraction (FNF), rather than the more conventional true-positive
fraction (TPF), as a function of false-positive fraction (FPF) to construct the observer’s ROC curve. Since
FNF = 1−TPF, this yields an ROC curve which is simply an “upside-down” version of the conventional curve,
and the area under this ROC curve (which we will denote ˜A) is just one minus the conventionally defined AUC.
Clearly this area will vary from 0.5, for a “guessing” observer, to 0, for a “perfect” observer. In a task with more
than two classes, however, we showed that although the “hypervolume under the ROC hypersurface” (HUH) is
again 0 for a perfect observer, the HUH of a guessing observer is, counterintuitively, also 0.7 (Briefly, the number
of degrees of freedom of the guessing observer’s ROC hypersurface is N − 1 rather than N2 − N − 1, yielding
a “degenerate” hypersurface with no hypervolume, much as in three dimensions the integral under a “surface”
which is actually a curve — e.g., z = f(x, y) where y = g(x) — will be zero.)

∗Correspondence: E-mail: d-edwards@uchicago.edu; Telephone: 773 834 5094; Fax: 773 702 0371



What is needed is a performance metric that shares the useful properties of AUC, namely its intuitive direct
relationship to the “difficulty” of the observer’s task (“near-guessing” observers have an ˜A near 0.5, “near-perfect”

observers have an ˜A near 0), without suffering from this drawback of degeneracy. We have begun to investigate a
performance metric that has its origins in the “expected utility” concept fundamental to ideal observer decision
theory,4 and which we have reason to believe is both related to HUH and yet not plagued by the degeneracy
issues of the HUH. In the next section, we attempt to motivate this performance metric, the “surface-averaged
expected cost” (SAEC), and derive theoretical properties of this quantity. In Sec. 3, we outline the simulation
studies we implemented in a number of simple two-class classification tasks; the results of those studies are
presented in Sec. 4. The implications and limitations of the proposed metric are discussed in Sec. 5, and we
summarize our conclusions in Sec. 6.

2. THEORY

In a two-class classification task, with the classes labeled “π+” (“positive”) and “π
−

” (“negative”), the expected
utility of an observer can be written as4

E{U} ≡ (UTP TPF + UFNFNF)P (π+) + (UFP FPF + UTNTNF)P (π
−

), (1)

where TPF is the probability of deciding an observation is positive, conditional on it actually being drawn from
class π+, more explicitly denoted as P (d = π+|t = π+); FNF is P (d = π

−
|t = π+); FPF is P (d = π+|t = π

−
);

and TNF is the true-negative fraction, or P (d = π
−
|t = π

−
). Each U represents the utility of a particular

decision under a particular truth condition. (We use a bold typeface to denote statistically variable quantities,
and here t denotes the true class to which a randomly sampled observation belongs, while d denotes the decision
made for that observation.)

In a classification task with an arbitrary number of classes N , with labels running from π1 to πN , the above
expression is readily generalized to obtain

E{U} ≡

N
∑

j=1

N
∑

i=1

(Ui|jPij)P (πj), (2)

where we have written the observer’s conditional classification rates P (d = πi|t = πj) simply as Pij . From the
rules for conditional probability,8

∑

i Pij = 1, and so we can rewrite this expression to obtain

E{U} =
N

∑

i=1

Ui|iP (πi)

−

N
∑

j=1

N
∑

i=1

i6=j

(Uj|j − Ui|j)P (πj)Pij

= U0 −

N
∑

j=1

N
∑

i=1

i6=j

γjijPij , (3)

where U0 is just the expression
∑

i Ui|iP (πi) (independent of the conditional error rates Pij which describe the
observer’s performance), and γjij ≡ (Uj|j − Ui|j)P (πj) gives, to within an arbitrary scale factor, the set of
N2 −N − 1 decision criteria used by the ideal observer to make decisions.5, 9–11 Note that the γjij are strictly
positive if we impose the reasonable assumption that an incorrect utility will always have a smaller utility than
the corresponding correct decision. If we now define the “normalized” utility (more precisely, if we choose
particular units in which to “measure” utility) as

u ≡
U

(
∑N

j=1

∑N
i=1

i6=j
γ2

jij)
1/2

, (4)



and similarly define γ0 ≡ U0/(
∑

γ2
jij)

1/2, we can simplify the expression for expected utility further to obtain

E{u} = γ0 − γ̂ · ~P . (5)

Here ~P is an (N2−N)-dimensional vector whose components are the conditional error rates Pij (with a specified
ordering, e.g., (P12, P13, . . . , P1N , P21, . . . , PN(N−2), PN(N−1))) — i.e., the coordinates of ROC space; and γ̂ is

a unit vector of the same dimensionality as ~P , whose components are the corresponding values of γjij after
normalization.

It is important to keep in mind that although this normalized expected utility is optimized only by the
ideal observer, it is well-defined for any observer at a particular operating point ~P and choice of (normalized)
utilities via γ̂. Furthermore, assuming the values of the observational priors P (πi) to be fixed and the values
of the utilities to be determined externally to the observer (i.e., not modifiable by the observer within a given
experiment or set of experiments), maximizing the normalized expected utility is clearly equivalent to minimizing

γ̂ · ~P . We will refer to this latter quantity as the expected cost; note that although “cost” has a far more general
definition in the literature (as do “utility,” “risk,” etc.), we will attempt to avoid confusion here by using the
term only in this restricted sense.

Suppose we have measured the set of all possible values of PN(N−1) for a given observer as a function of the

other N2−N−1 conditional error probabilities. (For the ideal observer, this can be conceived of as measuring ~P
for every possible value of γ̂; for a non-ideal observer, we assume that we can modify whatever set of N2−N − 1
decision criteria it is actually using, even if these are not usefully related to the utilities.) We write this as

PN(N−1) = R(P12, P13, . . . , P1N , P21, . . . , PN(N−3), PN(N−2))

= R(~P ∗), (6)

where ~P ∗ denotes the “reduced” vector, of dimensionality N2 − N − 1, obtained by deleting the (N2 − N)th

component of ~P . The HUH can be defined7 as

HUH ≡

∫

ΩR

R(~P ∗) dN2
−N−1 ~P ∗, (7)

or equivalently,

HUH ≡

∫

VR

dN2
−N ~P , (8)

where ΩR denotes the set of ~P ∗ for which R(~P ∗) is defined (the domain of the function defining the ROC

hypersurface), and VR denotes the set of all ~P enclosed by that hypersurface and by the boundaries of the ROC
space (given that 0 ≤ Pij ≤ 1). Note that in a two-class task, with the ROC curve given by FNF = R(FPF),
this reduces to

HUH =

∫

VR

dN2
−N ~P

=

1
∫

0

R(FPF)
∫

0

dFNFdFPF

=

1
∫

0

R(FPF) dFPF

= ˜A, (9)

as expected. (Note that, as stated in Sec. 1, this is one minus the conventional AUC that would be obtained by
integrating TPF as a function of FPF.)



Despite the long-standing success of AUC as a summary performance metric for ROC analysis, we have shown
the HUH not to be useful for this purpose in a classification task with three or more classes.7 Briefly, a “perfect”
observer can achieve values of, say, PN(N−1) = 0 for any achievable set of ~P ∗; by Eq. 7, the HUH for such an
observer will thus be zero (and will approach zero for a “near-perfect” observer). A “guessing” observer will
assign observations to the N classes randomly, independent of the actual truth states of those observations; since
the total probability of making a decision will be one, this leaves a set of only N − 1 degrees of freedom (each of
the probabilities of assigning an observation to a given class). But it can be shown that in such a situation, the
resulting domain of integration ΩR is “degenerate,” and the integral in Eq. 7 is zero regardless of the value of
the integrand (and will approach zero for a “near-guessing” observer). Thus, opposite extremes of performance
result in similar or identical values of HUH, making this quantity useless even as a summary performance metric
in classification tasks with more than two classes. In the two-class case, N2−N − 1 = N − 1 = 1, of course, and
(amusingly or providentially, depending perhaps on one’s worldview) no such degeneracy is encountered.

Discouraging though this result may be, it immediately brings to the forefront the question of what motivated
the choice of AUC as a summary performance metric to begin with. In the present context, it can be said that
AUC averages directly over “performance description variables” (such as FNF) without regard to utility (or,
equivalently, cost). For an experiment involving a human observer (the internals of whose decision-making process
may be unavailable to experimenter control) or an algorithmic observer (trained on a finite sample of observational
data), the actual “costs” may be unknown to the experimenter, or may not be available for modification in any
practical sense. On the other hand, ideal observer decision theory demonstrates the tremendous theoretical and
practical importance of Eq. 5, and it is natural to ask whether consideration of the expected cost, γ̂ · ~P , might
not be worthwhile, given the difficulty in generalizing AUC just described.

For the ideal observer itself, this line of inquiry seems quite promising indeed. For each possible value of
γ̂, the ideal observer will choose an operating point ~P that minimizes the expected cost. (It is possible, given
particular forms of the observational data probability density functions (PDFs), that multiple operating points
~P will be associated with a given γ̂; it can be shown, however, that such points will always lie in a simply
connected region, analogous to a straight line along a two-class ROC surface. We will not consider such special
cases here.) By taking the ideal observer’s ROC hypersurface as given, one can proceed in the opposite direction:
at any given point on the ideal observer’s ROC surface, the appropriate γ̂ for that point is that which minimizes
the expected cost. This, in turn, can be shown to imply that the appropriate γ̂ is normal to the ideal observer’s
ROC hypersurface at each point ~P .

For non-ideal observers, the situation is much more confusing. Given that such an observer might not be
basing its decisions on the utilities (available to the ideal observer) at all, it is unclear what value of γ̂ to assign

to a given ~P on such an observer’s ROC surface. Arbitrarily, we choose to make the same assignment made by
the ideal observer: at each point on the observer’s ROC hypersurface, we choose that value of γ̂ that is normal
to the ROC hypersurface at that point. Intuitively, this can be taken to be giving the non-ideal observer the
“benefit of the doubt”: in determining a total expected cost for the observer, we will at each point take the
contribution to that cost to be the “minimum” possible. Alternatively, we can say that the observer under this
model is at least behaving “locally” optimally.

Thus, for the ROC hypersurface given in Eq. 6, we define the “local” utility vector to be

γ̂R ≡
(−∇R, 1)

√

|∇R|2 + 1
, (10)

where the expression in parentheses denotes a vector of dimension N2 −N whose first N2 −N − 1 components
are the negatives of the components of ∇R; the sign is chosen because the components of γ̂R must be positive,
ruling out the possibility (∇R,−1). We use this definition to construct the surface integral

∫

σR

γ̂R · ~P dN2
−N−1σ. (11)



The integral is over the ROC hypersurface σR, that is, the set of points ~P such that PN(N−1) = R(~P ∗).The

differential element on this hypersurface is denoted by dN2
−N−1σ, where the superscript reminds us of the

dimensionality “within” that surface.

In the two class case, the differential element reduces to the differential arc length, which we can define as

ds ≡

√

1 +

(

dFNF

dFPF

)2

dFPF. (12)

The integral in Eq. 11 can then be written as

1
∫

0

(−dFNF
dFPF

, 1)
√

(

dFNF
dFPF

)2
+ 1

· (FPF, FNF )

√

1 +

(

dFNF

dFPF

)2

dFPF =

1
∫

0

(

−FPF
dFNF

dFPF
+ FNF

)

dFPF

=

1
∫

0

−FPF
dFNF

dFPF
dFPF +

1
∫

0

FNF dFPF

=

1
∫

0

FPF dFNF +

1
∫

0

FNF dFPF

= 2 ˜A. (13)

Note that in the next to last step, the negative sign has disappeared because FNF = 0 when FPF = 1 and vice
versa, so that the order of the limits of integration will be reversed. It is also vital to remember that ˜A here
denotes the area under the “upside-down” ROC curve (FNF plotted against FPF), and is thus one minus the
conventional AUC.

Clearly the quantity we have defined is directly related to performance — in fact, far more closely than we
had reason to hope: despite our ad hoc choice of γ̂R, the relation in Eq. 13 holds for arbitrary observers, and
not just ideal observers. Even more surprisingly, the generalization of this relationship can be shown to hold for
observers in tasks with arbitrary numbers of classes. Returning to Eq. 11, we rearrange terms to obtain

∫

σR

γ̂R · ~P dN2
−N−1σ =

∫

∂VR

γ̂R · ~P dN2
−N−1σ

=

∫

∂VR

~P · γ̂R dN2
−N−1σ

=

∫

∂VR

~P ·

[

(−∇R, 1)
√

|∇R|2 + 1
dN2

−N−1σ

]

=

∫

VR

div ~P dN2
−N ~P

= (N2 −N)HUH. (14)

Here we have used the n-dimensional extension of the divergence theorem (known in three dimensions as Gauss’s

theorem);12 div is the operator
∑

i(∂/∂Pi), which when applied to the vector ~P will simply yield the dimensional-

ity N2−N of ~P . Note also that in the first step, we have “closed” the ROC hypersurface with the boundary ∂VR

of the ROC hypervolume; this can be done for the given integrand, because the “bottom” surface PN(N−1) = 0
will contribute nothing to the surface integral.

Unfortunately, we are now back where we started: since it is equal (to within a proportionality constant) to the
HUH, the surface integral defined above will have exactly the same drawbacks as that quantity. However, writing



the performance metric in this form — as an integral of the scalar quantity γ̂R · ~P over the ROC hypersurface
— suggests a different approach, namely, considering an “average” of this quantity over the hypersurface:

Cσ ≡

∫

σR

γ̂R · ~P dN2
−N−1σ

∫

σR

dN2
−N−1σ

(15)

where we have divided the previous quantity by the “surface area” of the ROC hypersurface. The quantity Cσ

is the SAEC referred to in Sec. 1; the overline reminds us that it is an expectation value, and the subscript σ
reminds us that it is averaged over a surface (the ROC hypersurface). This can be considered analogous to the
concept from univariable calculus of the “average” of a function over an interval:

favg ≡
1

b− a

b
∫

a

f(x) dx. (16)

In particular, it should be immediately clear that Cσ is bounded by the maximum and minimum values of γ̂R · ~P ,
and that if γ̂R · ~P were constant over a given ROC hypersurface, then Cσ would be equal to this constant value.

Further analysis will need to be performed to confirm that this quantity remains well-defined for guessing
or even “near-guessing” observers. We have reason to believe that an extension of L’Hôpital’s rule should be
applicable in this case; i.e., although the numerator and denominator will both converge to zero in the limit of
approach to a guessing observer, the limit of Cσ itself should still be a non-zero quantity. Our results in this
regard, however, are still very preliminary. For the present work, we will consider only properties of this quantity
in the two-class case, where the degeneracy issues involving HUH do not arise. In the two-class case, of course,
we can use Eq. 13 to write

Cσ ≡
2 ˜A

S
(17)

where S is the arc-length along the ROC curve.

3. MATERIALS AND METHOD

We numerically investigated the behavior of Cσ compared with the conventional AUC under two models for the
distributions of the observer’s latent decision variable data: the “conventional” binormal model,13 and the ideal-
observer-related “proper” binormal model.6 Under the conventional model, the observer’s decision variables are
assumed to be drawn from a pair of distributions which are an (unspecified) monotonic transformation of two
normal distributions:

x+ ∼ N(x; µ+ = a/b, σ+ = 1/b) (18)

and

x
−

∼ N(x; µ
−

= 0, σ
−

= 1), (19)

where N(x; µ, σ) is a normal density function with mean µ and standard deviation σ. The observer makes
decisions by comparing an observation of unknown class x with a threshold x0; varying this threshold from −∞
to ∞ will sweep out the observer’s ROC curve. This curve is completely specified by the two parameters a and
b, and analytic forms exist for both individual operating points (FPF, TPF) and the conventional AUC (denoted
Az under this model) as functions of a and b.13

Under the “proper” binormal model, the observer is again assumed to make decisions using underlying data
monotonically related to the pair of distributions given in Eqs. 18 and 19. However, the actual decisions are
made by comparing the likelihood ratio of x, rather than x itself, with a threshold. The likelihood ratio is given
by

y ≡
N(x; a/b, 1/b)

N(x; 0, 1)
. (20)
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Figure 1. Isopleths of the Az performance metric (solid lines) and of the proposed Cσ metric (dash-dotted lines), for
various values of the a and b parameters of the conventional binormal model.

Varying the threshold y0 throughout its range will sweep out the observer’s ROC curve. For numerical purposes,
it has been found convenient to parametrize this curve using the parameters

c ≡
b− 1

b + 1
(21)

and

da ≡

√
2a

√
1 + b2

(22)

rather than a and b directly. The observer’s ROC curve is completely specified by c and da, and analytic forms
have been determined for both individual operating points (FPF, TPF) and the conventional AUC under this
model as functions of those two parameters.6

We calculated the Az of an observer assumed to operate under the conventional binormal model for 250 values
of a distributed uniformly between 0 and 5, and (at each such value of a) for 250 values of b distributed uniformly
between 0 and 2. For each of these 62,500 pairs of parameter values, we also calculated the corresponding value of
Cσ using the relation in Eq. 17. (The arc length S was calculated by generating a large number of operating points
along the curve, and adding together the line segment lengths

√

(FPFi − FPFi−1)2 + (TPFi − TPFi−1)2.)

A similar procedure was performed for the proper binormal model. We calculated the conventional AUC for
each of 250 values of c distributed uniformly between −1 and 1, and (at each such value of c) for 250 values of da

uniformly distributed between 0 and 4. For each of these 62,500 pairs of parameter values, we also calculated the
corresponding value of Cσ (again using the approximation for arc length described for the conventional model).

4. RESULTS

The calculated values of Az and of Cσ for the conventional binormal model are shown in isopleth (“contour”)
plots in Fig. 1. Similarly, the calculated values of the conventional AUC and Cσ for the proper binormal model
are shown in isopleth plots in Fig. 2.

Although difficult to discern from the plot, the isopleths in Fig. 1 do in fact cross, particularly in the lower
left region. For example, the parameter pair (a = 0.4819, b = 0.5060) corresponds to an Az value of 0.6663 and
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Figure 2. Isopleths of the conventional AUC performance metric (solid lines) and of the proposed Cσ metric (dash-dotted
lines), for various values of the c and da parameters of the proper binormal model.
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Figure 3. ROC curves generated under the conventional binormal model with parameter values of (a = 0.4189, b = 0.5060)
(solid curve), and (a = 0.2410, b = 0.0080) (dash-dotted curve).

a Cσ of 0.4315, while the parameter pair (a = 0.2410, b = 0.0080) corresponds to an ROC curve which has both
a lower Az of 0.5950 and a lower Cσ of 0.4095. (Recall that, as its name implies, the SAEC Cσ is a “cost”, and
thus lower values are intended to be “preferable,” in contrast to Az and the conventional AUC.) These two ROC
curves are plotted (conventionally, using TPF as the ordinate) in Fig. 3.



5. DISCUSSION

It is evident from Fig. 1 that the proposed performance metric Cσ does not perform identically to the conventional
AUC in all situations (i.e., for arbitrary decision rules). This is illustrated in more detail in Fig. 3; if the two
curves represented observers (radiologists or imaging systems, for example) which one wished to rank in order
of performance, then the two performance metrics would disagree as to which were actually preferable. This is
understandable given the shapes of the curves; the system with slightly lower Az is so severely “hooked” that its
arc length will be very close to two, driving down the “cost” Cσ to a greater extent than the loss in conventional
AUC.

It should be recalled, however, that in practical situations in which such a severe “hook” is seen in the ROC
curve, the observational data themselves do not usually support such a fitting of the curve.6 Even aside from
such data sampling and curve-fitting issues, comparing two systems when at least one of them has an ROC curve
with such a large “hook” is often problematic (compare the well-known situation when two systems have very
similar AUCs, but “cross,” making the decision of which system to prefer dependent on the region of ROC space
in which one chooses to operate). In short, the fact that Cσ does not agree exactly with a performance metric
such as Az , itself known to be imperfect, is not necessarily a fatal flaw.

The results presented in Fig. 2 are far more surprising. There appear to be no visible “crossings” of the
isopleths for any choices of parameters c and da. Although this result still needs to be confirmed analytically, it
would if found true imply that Cσ and the conventional AUC under the proper binormal model are equivalent
performance metrics. Whether this equivalence could be extended to arbitrary ideal observer models (i.e., those
for arbitrary PDFs rather than the binormal model) would also be an important area for further investigation.

The extensibility of the proposed performance metric to tasks with more than two classes is quite plausible,
but much remains to be done here as well. Preliminary work in this direction suggests that it may be possible
to apply an extension of L’Hôpital’s rule to the integrals in Eq. 15 in the situation where they approach 0 due to
dimensionality considerations. However, the resulting limit appears to depend strongly on the underlying data
PDFs (a counterintuitive result given the behavior of two-class near-guessing observers, whose ROC curves all
approach the diagonal line regardless of the data PDFs). More careful work will be necessary to validate or
refute these claims.

Related to the issue of dimensionality just mentioned is the situation of the “discrete” observer, i.e., an
observer which operates only at discrete operating points in ROC space (this applies to the two-class observer as
well as those with more classes). We have so far been unable to usefully generalize the definition of γ̂R and thus
Eq. 15 to this situation, even in the two-class case. It remains to be seen whether this last issue is an important
one or not.

6. CONCLUSIONS

We have proposed a novel ROC performance metric, the SAEC. Although grounded in the same theoretical
framework as the expected utility of the ideal observer, its practical realization involves readily comprehensible
quantities — the AUC and the arc length along the ROC curve in a two-class task, and the surface-averaged
integral of a well-defined scalar in a task with more than two classes.

Although the properties of this performance metric have yet to be thoroughly investigated, preliminary results
are quite encouraging. We have high hopes that this performance metric will allow comparison of observers in
classification tasks of varying complexity, without suffering from the drawbacks that other performance metrics,
such as the HUH, have been shown to possess.
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